Biology 164 Laboratory

Answers to Meiosis Problems.

1. How many different chromosomal combinations can result from meiosis in a species that has a diploid (2N) number of 8? Assume no crossing-over occurs.

 Sixteen different combinations.

 $ABCD$, $aBCD$
 $ABCd$, $aBCd$
 $AbcD$, $abCd$
 $AbCd$, $abCd$
 $AbcD$, $abcD$
 $Abcd$, $abcd$

2. Develop a mathematical formula that allows you to compute the answer to Question #1.

 a. What is the formula?

 2^n, where $n = \text{number of different chromosomes}$.

 b. Using that formula, how many chromosomal combinations can result from meiosis when the diploid number is 16?

 $2^8 = 256 \text{ different combinations}$.

 c. How about when the diploid number is 46 (as it is in humans)?

 $2^{23} = 8,388,608 \text{ different combinations!}$

3. The horse (*Equus caballus*) has a diploid complement of 64 chromosomes. The donkey (*Equus asinus*) has 62 chromosomes.

 a. What is the number of chromosomes that would be found in a hybrid offspring (mule) produced by mating a male donkey to a female horse?

 63 chromosomes.
b. Mules are usually sterile (incapable of producing viable gametes). During what phase of meiosis would problems occur in forming viable gametes? Why?

Metaphase I because one chromosome will be unpaired resulting in some gametes being short one chromosome, while others will have one extra chromosome.

4. Assume an organism with 2N number of 6 chromosomes. Draw diagrams comparing the appearance of the chromosomes:

a. In prophase I of meiosis and prophase of mitosis

![Prophase I of meiosis](image1) ![Prophase of mitosis](image2)

b. In metaphase II of meiosis and metaphase of mitosis

![Metaphase II of meiosis](image3) ![Metaphase of mitosis](image4)