Computer science studies the design of computational processes, computing systems, and virtual objects. Our goal is to provide students with a strong background in computer science, including the integration of knowledge from other disciplines. Our graduates have the ability and experience to enable and to produce innovative discoveries.

Students with a variety of interests may want to explore computer science, as it affects and interacts with virtually every discipline. Many advances in the natural and social sciences, engineering, and the humanities would not have been possible without the exponential growth in computing power and the corresponding design of advanced algorithms by computer scientists. Students who become majors or minors, or take just a few courses, will extend their potential by knowing more about how to effectively use computers and computation.

Students in computer science courses learn primarily through programming projects that provide them with experience in design, the application of computational thinking, and problem solving. Computational thinking is the ability to deconstruct a problem or process and describe it at the level of computable operations. Computational thinking integrates abstraction, hierarchical design, information management, and an understanding of complexity. The projects students undertake increase in scope and complexity both within a single course and as students progress through the major.

The computer science major prepares students for graduate work in computer science and related areas and for a wide variety of careers. The computer science minor provides students with the ability to effectively apply computational thinking to other disciplines. The interdisciplinary computation majors in biology, environmental studies, music, or theater and dance give students the opportunity to integrate computer science with a focus discipline. Students interested in any of these programs should enroll in Computer Science 151 or 152 in their first year.

Requirements for the Major in Computer Science

Computer Science 151 or 152, 231, 232, 251, 333, and 375 or 378; one elective numbered 200 or above; three electives numbered 300 or above, including at least one fall-spring sequence; and one 200-level mathematics or statistics course. Students may count only Computer Science 151 or 152, 231, and 251 toward both the computer science major and any interdisciplinary computation major.

Requirements for the Honors Program in Computer Science

An honors program is available for students who wish to pursue a topic more deeply. Students must have a grade point average of at least 3.25 in all computer science courses numbered 200 or higher and complete a yearlong, preapproved honors project (Computer Science 483 and 484) culminating in both a written paper and a colloquium presentation. The fall semester project satisfies an elective in the major requirements. Students who successfully complete the requirements and receive the recommendation of the department will graduate with “Honors in Computer Science.”

Requirements for the Minor in Computer Science

Computer Science 151 or 152, 231, 251, one course numbered 200 or above, one course numbered 300 or above, and a capstone experience. The capstone experience can be one of (a) the second semester of a two-semester elective sequence, (b) a project associated with a course in the student’s major (Computer Science 481/482), or (c) a four- (or more) credit independent study with a significant computing component in the student’s major department. Options (b) and (c) must be preapproved by a computer science advisor.

The point scale for retention of the major/minor applies to all courses in the major/minor. No requirement for the major/minor may be taken satisfactory/unsatisfactory.

Requirements for the Majors in Interdisciplinary Computation

Listed under “Biology,” “Environmental Studies,” “Music,” and “Theater and Dance.”

Computer Science 151 or 152, 231, 251, and two upper-level electives appropriate for the focus area. In addition, courses in the student’s focus discipline from one of the approved tracks, listed below, and a capstone experience of at least four credits (491 or 492). Each student will have an advisor in computer science and an advisor in his or her focus department. The advisors will oversee the student’s plan of study and capstone project.

Biology Track (without Advanced Placement Biology): Biology 163, 164, 279, 320, and one additional 200- or 300-level biology elective course with an informatics component, such as Biology 306, 378, or 382.

Biology Track (with Advanced Placement Biology): Biology 279, 320, two 200- or 300-level biology elective courses, and one 300-level course with an informatics component, such as Biology 306, 378, or 382.

Environmental Studies Track: Biology 131 or 164, Environmental Studies 118, 212 or 214, 233, 234, 271, 343, 352; one of 242, 276, 319, 344, 346, 366; 401, 402.
Music Track: Music 111, 181, 282; one 200-level or higher music elective that has a computational or digital focus; two semesters of applied lessons (both of which must be taken on the same instrument and for credit).

Theater and Dance Track: Theater and Dance 113 or 114; 135; 171 or two of 115, 116, 117; 281 or 285; 235 or 365.

Course Offerings

CS151fs Computational Thinking: Visual Media An introduction to computational thinking: how we can describe and solve problems using a computer. Using the Python language, students will learn how to write algorithms, manipulate information, and design programs. They will learn about abstraction, how to divide and organize a process into appropriate components, how to describe processes in a computer language, and how to analyze and understand the behavior of their programs. The projects will focus on manipulating images or generating complex and interesting scenes and animations each week through writing well-constructed programs. **Four credit hours.**

Q. SKRIEN, TAYLOR

CS152fs Computational Thinking: Science An introduction to computational thinking: how we can describe and solve problems using a computer. Using the Python language, students will learn how to write algorithms, manipulate information, and design programs. They will learn about abstraction, how to divide and organize a process into appropriate components, how to describe processes in a computer language, and how to analyze and understand the behavior of their programs. The projects focus on: (1) reading, writing, managing, and analyzing data; (2) modeling ecological systems using population and agent-based approaches; and (3) simulating physical systems with gravity and collisions. **Four credit hours.**

Q. SKRIEN, TAYLOR

CS231fs Data Structures and Algorithms Focuses on the common structures used to store data and the standard algorithms for manipulating them. Standard data structures include lists, stacks, queues, trees, heaps, hash tables, and graphs. Standard algorithms include searching, sorting, and traversals. Along with implementation details, students will learn to analyze the time and space efficiency of algorithms and how to select appropriate data structures and algorithms for a specific application. In homework, labs, and programming projects, students will implement their own data structures and make use of existing libraries to solve a variety of computational problems. **Prerequisite:** A grade of C- or higher in Computer Science 151 or 152. **Four credit hours.**

Q. CODABUX, MAXWELL

CS232f Computer Organization Computer organization focuses on how computers work. Students learn the fundamental hardware components, including storage (RAM, hard disks), input/output mechanisms, and the central processing unit (CPU). They learn how components are designed and built on several levels, including the design of electrical components, machine language, and assembly language. They also learn to program in assembly language for one or more simple processors. Students learn primarily through projects where they design digital circuits, design components of a CPU, or write programs in assembly language. **Prerequisite:** Computer Science 151, 152, or 231. **Four credit hours.**

LI

CS251s Data Analysis and Visualization Prepares students to apply computational data analysis and visualization approaches to real information from a variety of disciplines and applications. Data visualization is the interactive visual exploration of 2-D and 3-D graphic information using techniques that highlight patterns and relationships. Data analysis incorporates data management, data transformations, statistical analysis, data mining, and machine learning. Through programming projects, students will gain hands-on experience with the fundamentals of data analysis and visualization using data from active research projects at Colby and other institutions. **Prerequisite:** Computer Science 231. Mathematics 253 required for section A only. **Four credit hours.**

MAXWELL, TAYLOR

[CS267] **Interactive Digital Media** Digital forms of text, sound, images, and video enable rapid communication and manipulation of large amounts of information. Digital sensors provide easy access to information about the environment. Connecting sensors with digital media enables the creation of artistic installations with dynamic narratives that respond to a user's actions. Students will learn to manipulate digital media and collect sensor data using both applications and their own computer programs. By combining the two, they will create their own artistic installation and demonstrate it at the end of the term. **Prerequisite:** Computer Science 151, 152, or 231. **Three credit hours.**

A.

CS269j Computer Game Design Focuses on the process of taking stories, situations, puzzles, or challenges and defining them so a computer can execute the construct within which the game resides. Students will design a 2-D computer game using a standard game engine. Topics include game design, artistic concepts, image manipulation, game scripting, and artificial intelligence. Students will work in groups to design and develop a 2-D game to be distributed at the end of the term. Each group will make weekly presentations to the class, demonstrating their progress in game design. **Prerequisite:** Computer Science 151 or 152. **Three credit hours.**

MAXWELL

[CS321] **Computer Networks and Security** An introduction to key concepts in computer and data networking from both operational and security perspectives. Topics include data networking protocols, common network architectures, the Internet, computer and network threats, and applied network and system security. Topics will be applied and compared to real-world examples that help form perspectives on the modern networked world, its history and future, and its broader role in the information age. Students will engage the material through programming projects and written assignments. Previously offered as CS397 (Fall 2011). **Prerequisite:** Computer Science 231. **Four credit hours.**
[CS365] Computer Vision Investigates designing computer programs that extract information from digital images. Major topics include image formation and acquisition, gray-scale and color image processing, image filters, feature detection, texture, object segmentation, classification, recognition, and motion estimation. Students are introduced to classic and contemporary vision techniques with examples for homework and programming assignments drawn from biological and medical imaging, robotics, augmented reality, and digital photography. They will develop a medium-scale vision system using data from active research projects at Colby. Prerequisite: Computer Science 231. Four credit hours.

CODABUX
and 251. Four credit hours.

CS375s Analysis of Algorithms Focuses on classical algorithms in computer science and the analysis of the space and time efficiency of such algorithms as those that sort arrays and lists and search various data structures, including lists, trees, graphs, and strings. All major categories of algorithms are discussed, including iteration, divide and conquer, brute force, exhaustive search, greedy, dynamic programming, and approximation. Unsolvable and intractable problems are also covered, as is the role of NP-completeness. If time permits, some parallel and distributed algorithms will be discussed. Students will learn through problem sets and short programming projects. Prerequisite: Computer Science 231. Four credit hours. SKRIEN

[CS378] Introduction to the Theory of Computation Focuses on formal languages, automata, computability, complexity classes, and undecidability. Languages discussed include regular languages, context-free languages, and recursively enumerable languages. Both deterministic and non-deterministic forms of the corresponding machines (finite automata, push-down automata, and Turing machines) are also discussed. Unsolvable and intractable problems are addressed, as is the role of NP-completeness. Students will learn through problem sets and short programming projects. Prerequisite: Computer Science 231 and either Mathematics 274 or 275. Four credit hours.

CS398s Cryptography Listed as Mathematics 398. Four credit hours. KRUMM

CS431s Advanced Computer Networks Students will learn the fundamental concepts of wireless sensor networks, study current research in depth, and explore novel ideas in this area. In the first stage, students will read papers, learn commonly used networking tools, and write reports. In the second stage, they will work in groups to propose, research, write, and orally present a standard IEEE/ACM conference paper. Prerequisite: Computer Science 331. Four credit hours. LI

[CS441] Systems Biology II The application of principles learned in Systems Biology I to a particular biological system. Students will work in interdisciplinary teams to complete a project focusing on one biological system and one or more mathematical models of this system. Involves reading journal articles, designing and running numerical experiments, analyzing results, and presenting challenges and results. Culminates in both a poster presentation and a comprehensive journal article-styled report and oral presentation. Prerequisite: Computer Science 341. Four credit hours. N.

[CS451] Advanced Computer Graphics Focuses on advanced algorithms for rendering both hyper-photorealistic and non-photorealistic images of objects and scenes. Topics will include ray tracing, radiosity and other global illumination methods, animation, motion capture and mapping, modeling unique materials, modeling painting and drawing techniques, and other topics selected by students. Each week students will prepare written summaries and critiques of technical papers in computer graphics. Programming projects will include OpenGL, a photorealistic project, a non-photorealistic project, and a final project of the student's choice. Prerequisite: Computer Science 351. Four credit hours.

CS461s Object-Oriented Software Systems Students will learn how to design and implement a significant software project that is robust, maintainable, extensible, and modular, building on their experience in Computer Science 361. The focus will vary from year to year. For example, students may gather specifications and then analyze, design, and implement a business application or dynamic website following standard software engineering practices. Students will learn through creating, implementing, and refining their own software designs in an iterative design process. Prerequisite: Computer Science 232 (may be taken concurrently) and 361. Four credit hours. SKRIEN

CS481f, 482s Minor Capstone Independent project and capstone experience for minors. Taken in tandem with a course in the student's major to develop a computing project in consultation with his or her computer science advisor that relates to or extends a topic from the related course. Two to four credit hours. MAXWELL FACULTY

CS483Jj Honors Research in Computer Science Noncredit. TAYLOR

CS491f, 492s Independent Study Independent study in an area of computer science of particular interest to the student. Prerequisite: Permission of the instructor. One to four credit hours. FACULTY