The Environmental Studies Program offers interdisciplinary majors in environmental policy, environmental science, and environmental studies-interdisciplinary computation as well as a minor that can be elected by majors in any discipline.

The Environmental Studies Program at Colby was founded in 1971 and has received national recognition for developing an innovative, project-based curriculum and for challenging students to engage hands-on with environmental issues at Colby, in Maine, and around the world. Our students and faculty are active locally, nationally, and internationally in studying and helping to solve diverse environmental challenges. The program encourages and supports student environmental initiatives and activism. Colby was one of the first colleges in the nation to achieve carbon neutrality and uses 100-percent renewable source electricity. Colby also seeks LEED silver certification of all new construction and major renovations and uses sustainably harvested wood biomass instead of oil as its primary fuel for heat and hot water, reducing fossil fuel use by approximately 90 percent. The U.S. Environmental Protection Agency, the state of Maine, and other organizations have recognized Colby for its commitment to environmental academics and sustainability. Recent examples of student-led environmental initiatives include establishing an organic garden, organizing activities to reduce carbon emissions on campus, developing a climate action plan in the local community, raising awareness about the dangers of using hazardous chemicals in personal care products and children’s toys at the state and federal levels, and reducing bottled water use on campus.

A strategic partnership between Colby and the Bigelow Laboratory for Ocean Sciences has expanded educational and research opportunities in marine sciences for students. The partnership includes an expansion of the program’s marine sciences curriculum, including a semester of study in residence at Bigelow, Jan Plan courses taught by Bigelow research scientists, an increase in student research opportunities, and curricular innovations that combine scientific research with economic and social policy analysis.

The Environmental Studies Program curriculum emphasizes inquiry-based learning and original research opportunities. Each major is flexible and enables students to pursue their individual academic goals and interests. Each major provides a broad-based course of study and prepares graduates to understand and to address the many complex environmental challenges facing society. The interdisciplinary nature of our curriculum is enhanced by close ties to many departments and programs in the natural sciences, social sciences, and humanities. Our science and policy curricula benefit from our Maine location, including access to diverse natural areas and unique access to government, nonprofit, and business institutions. Our graduates are prepared to take leadership positions in businesses, nonprofits, consulting firms, educational institutions, and government agencies. Many of our graduates complete postgraduate work in environmental sciences/studies, ecology, marine science, public health, urban/rural planning, natural resource conservation and management, law, environmental and public policy, and other related areas.

A student may elect only one of the majors offered by the Environmental Studies Program. A student cannot elect both the chemistry: environmental science concentration and the environmental science major with an environmental chemistry focus.

Requirements for the Major in Environmental Policy

The interdisciplinary environmental policy major provides an extensive introduction to the study of domestic and international environmental policy. Students combine a foundation course in environmental studies with courses in environmental economics, domestic environmental policy and law, international environmental policy and politics, and environmental science. Diverse electives allow students to explore topics such as introductory geographic information systems (GIS), conservation biology, global food policy, marine and freshwater conservation, public health, and the environmental humanities.

Environmental policy majors are encouraged to take Environmental Studies 118 (spring) in their first year at Colby. Students pursuing this major should elect Environmental Studies 233 and 271 (if possible) in the fall and 234 in the spring of their sophomore year. Students must complete at least one course at the 300 level or above from category III below. No more than one course at the 100 level may be used to fulfill category III. No requirement for the major may be taken satisfactory/unsatisfactory. AP credit can fulfill core course requirements based on exam performance and coverage. Exemption from Environmental Studies 118 is granted with an AP test score of 4 or 5, allowing advanced placement into other courses. Courses not listed below, such as those offered by some off-campus study programs, may count toward the major pending prior approval by the program director. Up to two courses may be counted toward the major from approved off-campus study programs.

Environmental policy majors are encouraged to work with their advisor to develop a curricular pathway that includes both depth and breadth of study. Recommended thematic groupings selected from electives in category III and category IV below include: conservation and...
resources, energy and climate, environmental humanities, food and agriculture, public health, and water resources (marine and freshwater). See the Environmental Studies Program website for details on suggested courses for these groupings. Students are welcome to develop additional thematic pathways (e.g., environmental justice, green building, urban and regional planning).

I. Required Environmental Studies Core Courses

Biology
- 163 Cellular Basis of Life
- 164 Evolution and Diversity

Environmental Studies
- 118 Environment and Society
- 271 Introduction to Ecology

Economics
- 133 Principles of Microeconomics
- 231 Environmental and Natural Resource Economics

II. All of the Following Courses

Environmental Studies
- 233 Environmental Policy
- 234 International Environmental Policy

Statistics
- 212 Introduction to Statistical Methods

III. Humans and the Environment (three courses, at least two from environmental studies)

Anthropology
- 256 Land, Food, Culture, and Power

Environmental Studies
- 151 Landscape and Meaning
- 212 Introduction to GIS and Remote Sensing (if not used to satisfy IV below) or
- 214 Introduction to GIS and Spatial Analysis (if not used to satisfy IV below)
- 242 Marine Conservation and Policy
- 244 Marine Communities (if not used to satisfy IV below)
- 265 Global Public Health
- 276 Global Change Ecology (if not used to satisfy IV below)
- 319 Conservation Biology (if not used to satisfy IV below)
- 343 Environmental Change
- 344 Marine Fisheries Management
- 346 Global Food Policy
- 358 Ecological Field Study (if not used to satisfy IV below)
- 364 Climate Change, Justice, and Health
- 366 Environment and Human Health (if not used to satisfy IV below)

History
- 248 Nuclear Visions, Environmental Realities
- 364 Environmental and Health History in Africa
- 394 Ecological History

Philosophy
- 216 Philosophy of Nature
- 243 Environmental Ethics
- 328 Radical Ecologies

Science, Technology, and Society
- 215 Weather, Climate, and Society

IV. Three of the Following Courses (at least one from environmental studies)

Biology
• 197A Biochemistry of Food
• 225 Immunology
• 237 Woody Plants
• 246 Parasitology
• 259 Plants of the Tropics
• 275 Human Physiology
• 277 Vertebrate Natural History
• 334 Ornithology
• 354 Marine Ecology
• 382 Ecological Modeling

Chemistry
• 141 and 142 General Chemistry I and II or
• 147 Comprehensive General Chemistry (cannot be counted with Chemistry 141 and 142)
• 217 Environmental Chemistry
• 331 Chemical Methods of Analysis

Economics
• 278 Joules to Dollars

Environmental Studies
• 212 Introduction to GIS and Remote Sensing or
• 214 Introduction to GIS and Spatial Analysis
• 218 Exploratory Data Analysis in R
• 244 Marine Communities
• 276 Global Change Ecology
• 319 Conservation Biology
• 338 Forest Ecosystems
• 343 Environmental Change
• 356 Aquatic Ecology
• 358 Ecological Field Study
• 366 Environment and Human Health

Geology
• 141 Earth and Environment or
• 142 Deep Time Planet Earth

Physics
• 141 Foundations of Mechanics or
• 143 Honors Physics
• 145 Foundations of Electromagnetism and Optics

V. One of the Following Capstone Courses

Environmental Studies
• 493 Environmental Policy Practicum or
• 494 Problems in Environmental Science (with permission of director)

VI. Senior Colloquia

Environmental Studies
• 401, 402 Senior Colloquium (one credit for the year)

Environmental Studies 401 and 402 provide one credit for the senior year and typically are taken in addition to a normal four-course semester.

Students are strongly encouraged to participate in relevant on- and off-campus opportunities, including research projects, public policy and/or humanities experiences, field studies, or internships in the discipline to complement their academic work. Environmental studies majors may apply for Environmental Studies Program financial assistance to participate in relevant research or internship opportunities.

Requirements for the Major in Environmental Science

The interdisciplinary environmental science major includes foundation courses and core courses in environmental economics, biology and ecology, chemistry or physics, geology or GIS, and mathematics. Students select a focus area to explore in depth. Current focus areas include aquatic sciences (freshwater and marine), conservation biology, ecosystem ecology, energy and climate, and public health.
Students may also petition the Environmental Studies Program director to propose well-structured alternative focus areas. The senior capstone seminars provide a hands-on approach to environmental science research in freshwater or marine ecosystems.

Environmental science majors are encouraged to enroll in Biology 163 (fall) and 164 (spring) and Environmental Studies 118 (spring) in their first year, and Environmental Science 271 (fall) in their sophomore year. Students interested in the environmental science major with a marine science focus should consider the Bigelow Laboratory Changing Oceans semester program in their junior year.

Majors must complete at least two courses at the 300 level or above selected from categories III and IV below. No more than one course at the 100 level may be used to fulfill category III. No requirement for the major may be taken satisfactory/unsatisfactory. AP credits may also provide advanced placement in biology, chemistry, physics, calculus, and microeconomics. Environmental science majors should consult with their advisor as early as their first year at Colby to identify any courses beyond the major requirements that may be desirable to meet their postgraduate goals, especially graduate or professional school.

I. Required Environmental Studies Core Courses

Biology
- 163 Cellular Basis of Life
- 164 Evolution and Diversity

Environmental Studies
- 118 Environment and Society
- 271 Introduction to Ecology

Economics
- 133 Principles of Microeconomics
- 231 Environmental and Natural Resource Economics

II. Required Science and Mathematics Courses

Chemistry
- 141 and 142 General Chemistry I and II or
- 147 Comprehensive General Chemistry

OR

Physics
- 141 Foundations of Mechanics or 143 Honors Physics and
- 145 Foundations in Electromagnetism and Optics

Geology
- 141 Earth and Environment or
- 142 Deep Time Planet Earth

OR

Environmental Studies
- 212 Introduction to GIS and Remote Sensing or
- 214 Introduction to GIS and Spatial Analysis

Mathematics and Statistics
- Mathematics 121 Single-Variable Calculus and
- Statistics 212 Elementary Statistics

Students electing the energy and climate focus area are encouraged to also take Mathematics 122 Series and Multi-Variable Calculus.

III. Humans and the Environment (two courses, not taken from the same discipline unless that discipline is environmental studies)

Anthropology
- 256 Land, Food, Culture, and Power

Environmental Studies
- 151 Landscape and Meaning
- 212 Introduction to GIS and Remote Sensing Studies (if not used to satisfy II above) or
- 214 Introduction to GIS and Spatial Analysis (if not used to satisfy II above)
- 233 Environmental Policy
- 234 International Environmental Policy
- 242 Marine Conservation and Policy
IV. Focus Area (four courses, depending on the focus area chosen, and an additional culminating experience chosen in consultation with advisor)

The Environmental Studies Program will consider well-structured proposals for additional focus areas. Advanced Placement credits can provide advanced placement in focus areas but cannot reduce the number of required focus-area courses below four.

A. Aquatic Sciences (Freshwater and Marine) (four courses)

Environmental Studies
- 244 Marine Communities
- 356 Aquatic Ecology

Two Courses from the following:

Biology
- 254 Marine Invertebrate Zoology
- 354 Marine Ecology

Chemistry
- 217 Environmental Chemistry
- 331 Chemical Methods of Analysis

Environmental Studies
- 212 Introduction to GIS and Remote Sensing or 214 Introduction to GIS and Spatial Analysis or 218 Exploratory Data Analysis in R
- 242 Marine Conservation and Policy
- 276 Global Change Ecology
- 344 Marine Fisheries Management
- 358 Ecological Field Study

The Bigelow Laboratory Changing Oceans semester program will fulfill three courses in the Aquatic Sciences focus area.

Culminating Experience:

Environmental Studies
494 Problems in Environmental Science

B. Climate and Energy (four courses)

Environmental Studies
- 276 Global Change Ecology

Chemistry
- 217 Environmental Chemistry
OR

Economics

• 278 Joules to Dollars

Two Courses from the following:

Biology

• 382 Ecological Modeling

Chemistry

• 241 Organic Chemistry I
• 242 Organic Chemistry II
• 217 Environmental Chemistry (if not used above)
• 278 Joules to Dollars (if not used above)
• 331 Chemical Methods of Analysis
• 341 Physical Chemistry: Thermodynamics and Kinetics
• 342 Physical Chemistry: Quantum and Statistical Mechanics

Environmental Studies

• 218 Exploratory Data Analysis in R
• 364 Climate Change, Justice and Health

Geology

• 363 Paleoceanography

Physics

• 312 Physics of Fluids

The Bigelow Laboratory Changing Oceans semester program will fulfill up to two courses in the Climate and Energy focus area.

Culminating Experience:

Environmental Studies

• 494 Problems in Environmental Science

C. Conservation Biology (four courses)

Environmental Studies

• 319 Conservation Biology
• 338 Forest Ecosystems

Two Courses from the following:

Biology

• 237 Woody Plants
• 259 Plants of the Tropics
• 277 Vertebrate Natural History
• 334 Ornithology
• 354 Marine Ecology
• 382 Ecological Modeling

Environmental Studies

• 212 Introduction to GIS and Remote Sensing or
• 214 Introduction to GIS and Spatial Analysis (if not used to satisfy II above)
• 218 Exploratory Data Analysis in R
• 242 Marine Conservation and Policy
• 244 Marine Communities
• 356 Aquatic Ecology
• 358 Ecological Field Study

Culminating Experience:

Environmental Studies

• 494 Problems in Environmental Science
D. Ecosystem Ecology (four courses)

Environmental Studies
- 276 Global Change Ecology
- 338 Forest Ecosystems

Two Courses from the following:

Biology
- 382 Ecological Modeling

Chemistry
- 217 Environmental Chemistry
- 331 Chemical Methods of Analysis

Economics
- 278 Joules to Dollars

Environmental Studies
- 218 Exploratory Data Analysis in R
- 242 Marine Conservation and Policy
- 244 Marine Communities
- 356 Aquatic Ecology

Geology
- 225 Mineralogy
- 363 Paleoceanography

Culminating Experience:

Environmental Studies
- 494 Problems in Environmental Science

E. Public Health (four courses)

Environmental Studies
- 265 Global Public Health
- 366 Environment and Human Health

Two Courses from the following:

Biochemistry
- 362 Medical Biochemistry or
- 367 Biochemistry of the Cell I

Biology
- 225 Immunology
- 246 Parasitology
- 275 Mammalian Physiology
- 278 Biomedical Genomics and Bioinformatics
- 348 Pathogenic Bacteriology

Chemistry
- 241 Organic Chemistry I

Environmental Studies
- 212 Introduction to GIS and Remote Sensing or 214 Introduction to GIS and Spatial Analysis (if not used to satisfy II above) or 218 Exploratory Data Analysis in R
- 364 Climate Change, Justice and Health

Statistics
- 306 Topics in Epidemiology

Culminating Experience:

Environmental Studies
• 493 Environmental Policy Practicum or
• 494 Problems in Environmental Science

V. Senior Colloquium

Environmental Studies

• 401, 402 Senior Colloquium (one credit for the year)

Environmental Studies 401 and 402 provide one credit for the senior year and typically are taken in addition to a normal four-course semester.

Students are encouraged to consider field courses offered by Colby or other approved programs. Students are strongly encouraged to participate in research projects, relevant field studies, or internships in the discipline to complement their academic work. Environmental studies majors may apply for Environmental Studies Program financial assistance to participate in relevant research or internship opportunities.

Requirements for the Major in Environmental Studies-Interdisciplinary Computation

The major in environmental studies-interdisciplinary computation provides an introduction to environmental studies as a discipline as well as training in computational techniques used in environmental policy and science. Students will become familiar with quantitative tools used to investigate environmental problems, especially GIS and remote sensing. No requirement for the major may be taken satisfactory/unsatisfactory. Advanced Placement credits can fulfill core course requirements based on exam performance and coverage. Students interested in this major should try to take Computer Science 151 or 152 in their first year (fall or spring) and Computer Science 231 (fall) and 251 (spring) in their second year. Students should consult with the Environmental Studies Program director or their computer science advisor when planning their capstone independent-study project.

I. Environmental Studies Core Courses

Biology

• 163 Cellular Basis of Life
• 164 Evolution and Diversity

Environmental Studies

• 118 Environment and Society
• 271 Introduction to Ecology

II. Required Environmental Studies Courses

Environmental Studies

• 212 Introduction to GIS and Remote Sensing or
• 214 Introduction to GIS and Spatial Analysis
• 218 Exploratory Data Analysis in \(R \)

III. Three Courses Selected from the following:

Environmental Studies

• 233 Environmental Policy
• 234 International Environmental Policy
• 242 Marine Conservation and Policy
• 244 Marine Communities
• 265 Global Public Health
• 276 Global Change Ecology
• 319 Conservation Biology
• 338 Forest Ecosystems
• 343 Environmental Change
• 344 Marine Fisheries Management
• 346 Global Food Policy
• 364 Climate Change, Justice and Health
• 366 Environment and Human Health

IV. Required Computer Science Courses:

Computer Science

• 151 Computational Thinking: Visual Media or
• 152 Computational Thinking: Science
• 231 Data Structures and Algorithms
• 251 Data Analysis and Visualization
• One additional course numbered 200 or above

One Course from the following:
• 341 Systems Biology I
• 363 Robotics
• 365 Computer Vision
• or other approved course

V. Capstone Courses

Environmental Studies
• 493 Environmental Policy Practicum or
• 494 Problems in Environmental Science

VI. Senior Colloquia

Environmental Studies
• 401, 402 Senior Colloquium

Environmental Studies 401 and 402 provide one credit for the senior year and typically are taken in addition to a normal four-course semester. Environmental studies majors may apply for Environmental Studies Program financial assistance to participate in relevant research or internship opportunities.

Requirements for Honors in Environmental Studies

Environmental studies majors with a minimum cumulative grade point average of 3.5 at the end of the January term of the junior year or with special program approval are eligible to apply for the Environmental Studies Honors Research Program. Interested students should contact a faculty sponsor during the spring semester of the junior year to discuss a project. Students who are studying abroad in the spring should try to make initial contact with a potential sponsor in the spring via email, but may complete their proposal in the fall at the beginning of the academic year. If the faculty sponsor approves a proposed project, students will register for ES491 (Independent Study) in the fall of their senior year. During the fall, students must write a thesis proposal, have it approved by the environmental studies faculty, and make progress on their research. Students may continue working on their project by registering for Environmental Studies 291 (Independent Study) during Jan Plan. Students approved by the environmental studies program will continue their research during the spring semester in Environmental Studies 484 (Honors Project). Upon successful completion of honors, Environmental Studies 491 and 291 will be converted to honors credit. A maximum of eight credits for honors research is allowed for the entire year.

Also, students enrolled in Environmental Studies 493 or 494 may petition the program to expand their independent study for these courses into an honors project to be conducted in January and the spring semester.

Successful completion of the honors program will include an approved thesis, an oral presentation at the Colby Liberal Arts Symposium, a successful thesis defense, and the completion of the required course work for the major. The student fulfilling these requirements will graduate with “Honors in Environmental Studies.” In cases where requirements for honors have not been fulfilled at the end of the spring semester, Environmental Studies 484 (Honors Research) will revert to a graded Environmental Studies 492 (Independent Study).

Requirements for the Minor in Environmental Studies

The environmental studies minor is designed to introduce students to environmental issues and their ramifications in the context of the social and natural sciences. Course requirements provide flexibility, allowing students to study in areas of most interest to them. AP credit in a subject allows advanced placement, but it does not reduce the number of courses required for the minor. Courses not listed below, such as those offered by some off-campus study programs, may count toward the minor pending prior approval by the program director.

Requirements include
• 118 Environment and Society

and

1. Either Economics 133 and 231; or Anthropology 112 and one of 256 or 253 or Global Studies 255; or Environmental Studies 233 and 234; or Environmental Studies 265 and either 364 or 366; or Philosophy 243 and either 216 or 328;
2. Either Biology 163 or 164; or Geology 141 and one additional geology course; or Chemistry 141 and 142, or 147 and one additional chemistry course; or two courses from Bigelow Ocean Science Semester
3. Two additional courses, including one numbered 300 or above, selected from the following group(s):

Group 1: At least one course selected from the environmental studies core courses:

Environmental Studies
• 151 Landscape and Meaning
• 212 Introduction to GIS and Remote Sensing or
• 214 Introduction to GIS and Spatial Analysis
• 218 Exploratory Data Analysis in \(R \)
• 233 Environmental Policy
• 234 International Environmental Policy
• 242 Marine Conservation and Policy
• 244 Marine Communities
• 265 Global Public Health
• 276 Global Change Ecology
• 319 Conservation Biology
• 338 Forest Ecosystems
• 343 Environmental Change
• 344 Marine Fisheries Management
• 346 Global Food Policy
• 356 Aquatic Ecology
• 358 Ecological Field Study
• 364 Climate Change, Justice and Health
• 366 Environment and Human Health

Group 2: If only one course is chosen from the environmental studies core group (Group 1), then one additional course from:

Anthropology

• 256 Land, Food, Culture, and Power
• 253 Goods, Gifts, and Globalizing Consumers

Biology

• 237 Woody Plants
• 259 Plants of the Tropics
• 277 Vertebrate Natural History
• 354 Marine Ecology
• 382 Ecological Modeling

Chemistry

• 217 Environmental Chemistry
• 331 Chemical Methods of Analysis

Economics

• 231 Environmental and Resource Economics
• 278 Joules to Dollars

Geology

• 254 Principles of Geomorphology

History

• 248 Nuclear Visions, Environmental Realities
• 346 Global Health History
• 394 Ecological History

Philosophy

• 216 Philosophy of Nature
• 243 Environmental Ethics
• 328 Radical Ecologies

Science, Technology, and Society

• 215 Weather, Climate, and Society

Minors also are encouraged to have a hands-on environmental activity either of an experiential nature (internship) or an academic nature (research project). In many if not most cases, at least one of these activities may be required by one of the courses selected and satisfied automatically. No requirement for the minor may be taken satisfactory/unsatisfactory.
Course Offerings

ES118s Environment and Society An interdisciplinary study of human relationships with and impacts on the environment. Examination of important local, national, and global environmental issues by exploring causes and methods for investigating these pressing problems, as well as possible solutions, from scientific and public-policy perspectives. Students explore important literature and ideas in the field to complement the lectures; conduct an original, semester-long, group research project; and complete several writing assignments. Four credit hours. BRUESEWITZ, NYHUS, WALKER

ES120 Community Responses to Environmental Hazards An introduction to community-level environmental problems related to hazardous waste and the impacts on and responses of affected communities. Examines the concept of environmental justice and how the risk of hazardous exposures is related to race, ethnicity, class, and gender. We discuss U.S. policy debates on hazardous waste regulation and environmental injustice claims, and we consider the evidence for the inequitable distribution of environmental quality and adverse health impacts, the mechanisms for environmental and public health decision making, and community access to informational resources and empowerment. Four credit hours. W1.

ES120B From Darwin to Dillard: Nature Writing through Time Focusing on broad themes such as observing and exploring, encountering animals, working the land, and dwelling in place, we thoughtfully and critically engage a century of excellent nature writing by authors worldwide. Students learn about and practice nature writing using the personal journal, the essay, word pictures and figurative language, story telling, poetry, and activism. Through reading, writing, art, music, video, and time outdoors, students encounter nature using all their senses, and gain an appreciation of the content and process of nature writing. Four credit hours. W1.

ES143J Sustainable and Socially Responsible Business Provides a broad overview of sustainable and socially responsible business principles and the ways in which companies incorporate them. Also introduces sustainable and socially responsible investment strategies and reviews their potential impact and effectiveness. Through a series of readings, lectures, guest speakers, and real-world case studies, students are exposed to the issues and opportunities facing green businesses. Includes small-group and individual presentations. Three credit hours. PENNEY

ES151 Landscapes and Meaning: An Exploration of Environmental Writing An exploration of the works of selected 20th-century environmental writers and how their life experiences contribute to a sense of connection with and action on behalf of the Earth. Through readings, film, writing assignments, group discussion, and journaling, students will develop critical thinking and communication skills while reflecting on their own personal relationship with nature. Three credit hours. L.

ES212s Introduction to GIS and Remote Sensing A comprehensive theoretical and practical introduction to the fundamental principles of geographic information systems and remote sensing digital image processing. Topics include data sources and models, map scales and projections, spatial analysis, elementary satellite image interpretation and manipulation, and global positioning systems. Current issues and applications of GIS, with emphasis on environmental topics. Students develop and carry out independent projects using GIS. Prerequisite: Sophomore or higher standing. Not open to students who have completed Environmental Studies 214 or 214J. Four credit hours. NYHUS

ES214f Introduction to GIS and Spatial Analysis An introduction to geographic information systems’ (GIS) data management and visualization capabilities as well as the theory and application of spatial analysis techniques. Topics covered include spatial data representation in a GIS, effective map making, coordinate systems and projections, exploratory spatial data analysis (ESDA), and spatial statistical analysis. Prerequisite: Sophomore or higher standing. Not open to students who have completed Environmental Studies 212 or 214J. Four credit hours. GIMOND

ES214Jj Introduction to GIS and Spatial Analysis An introduction to geographic information systems' (GIS) data management and visualization capabilities as well as the theory and application of spatial analysis techniques. Topics covered include spatial data representation in a GIS, effective map making, coordinate systems and projections, exploratory spatial data analysis (ESDA), and spatial statistical analysis. Prerequisite: Sophomore or higher standing. Not open to students who have completed Environmental Studies 212 or 214. Three credit hours. GIMOND

ES215 Weather, Climate, and Society Listed as Science, Technology, and Society 215. Four credit hours. N.

ES216s Philosophy of Nature Listed as Philosophy 216. Four credit hours. PETERSON

ES217s Environmental Chemistry Listed as Chemistry 217. Three credit hours. MCKINNEY
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prerequisite(s)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES218s</td>
<td>Exploratory Data Analysis in R</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Exploratory data analysis employs methods such as</td>
<td>robus data summaries and data visualization to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>isolate important patterns and features in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>data to shed light on the phenomena being</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>investigated. Students will learn the building</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>blocks of effective graphic design for data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>exploration and for publication using the R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>programming environment. They will also learn how</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to manipulate and restructure complex data sets</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(including spatial data) for data analysis. Students</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>will use R and RStudio to generate dynamic reports</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>that will integrate both analysis and presentation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>with a strong emphasis on reproducible research.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prerequisite: Sophomore standing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Four credit hours.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIMOND</td>
<td></td>
</tr>
<tr>
<td>ES219j</td>
<td>Architectural Design Workshop</td>
<td></td>
<td>Three</td>
</tr>
<tr>
<td></td>
<td>Listed as Art 218.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lock</td>
<td></td>
</tr>
<tr>
<td>ES228</td>
<td>Nature and the Built Environment</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Listed as American Studies 228.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES231s</td>
<td>Environmental and Natural Resource Economics</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Listed as Economics 231.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES233f</td>
<td>Environmental Policy</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>A comprehensive and interdisciplinary introduction</td>
<td>to the process and challenges of developing,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to the process and challenges of developing,</td>
<td>implementing, and evaluating environmental policy.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>implementing, and evaluating environmental policy.</td>
<td>The roles of costs and benefits, uncertainty and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>risks, science and technology, and attitudes and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ethics are explored. Historic and contemporary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>case studies are used to examine major institutions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and actors, laws and regulations, incentives and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>enforcement approaches, and their role in addressing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>our nation's most pressing environmental problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Students complete a semester-long research</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>assignment. Prerequisite: Environmental Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>118. Four credit hours.</td>
<td></td>
</tr>
<tr>
<td>ES234s</td>
<td>International Environmental Policy</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Examines how communities, nations, and international</td>
<td>organizations govern the use of natural resources</td>
<td></td>
</tr>
<tr>
<td></td>
<td>organizations govern the use of natural resources</td>
<td>including water, land, forests, fisheries, and the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>global climate. Through case studies and international</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>environmental treaty analyses we will develop an</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>understanding of global environmental issues;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>explore complementarities and tradeoffs among local</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>national, and global approaches to environmental</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>governance; highlight the environmental justice</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>implications of various resource management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>regimes; and assess the effectiveness of policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to address major environmental problems. **Prereq-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>uisite:** Environmental Studies 118. **Four credit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hours. I. Reynolds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Listed as Biology 240.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES242s</td>
<td>Marine Conservation and Policy</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Human activities and effects—including overfishing,</td>
<td>water pollution, climate change, and benthic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>habitat destruction—have all had major impacts on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ocean ecosystems. Through lectures and discussions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>we will investigate global, regional, and local</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>threats to marine biodiversity and ecosystem function.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential conservation solutions will be</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>considered. Independent and group research projects</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>will investigate the science and policy of marine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>conservation issues and will evaluate and synthesize</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>information from scientific literature, popular</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>media, and online discussions. Prerequisite:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Studies 118. Four credit hours.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mcclenachan</td>
<td></td>
</tr>
<tr>
<td>ES243</td>
<td>Environmental Ethics</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Listed as Philosophy 243.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES244s</td>
<td>Marine Communities</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Introduces students to a diversity of marine</td>
<td>community types around the world, including kelp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>forests, coral reefs, salt marshes, and pelagic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>communities. Through lectures, readings, and class</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>activities, students will learn about the physical,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>biological, and chemical structuring forces in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the ocean, key ecological interactions, and human</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>impacts across ecosystems. Key learning goals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>include improved scientific literacy in marine</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>science, as well as enhanced public speaking and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>writing skills. Prerequisite: Biology 271 or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental Studies 271. Four credit hours.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N. Mcclenachan</td>
<td></td>
</tr>
<tr>
<td>ES259</td>
<td>Plants of the Tropics</td>
<td></td>
<td>Three</td>
</tr>
<tr>
<td></td>
<td>Listed as Biology 259.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES265f</td>
<td>Global Public Health</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>An introduction to the principles and measures of</td>
<td>global health, disease burdens, and environmen-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tional determinants of health, including poverty,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>climate change, pollution, population, violence,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and lack of safe food, clean water, and fuels. We</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>will also study international health institutions,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>key actors, and environmental regimes for the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>regulation of environmental health hazards.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Through small-group presentations and discussion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>we will explore global case studies that highlight</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the complex relationship between human health and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the environment. Prerequisite: Environmental</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Studies 118 or a course in the natural sciences.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Four credit hours.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carlson</td>
<td></td>
</tr>
<tr>
<td>ES271f</td>
<td>Introduction to Ecology</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Listed as Biology 271.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N, Lb. Becknell, Moore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES276f</td>
<td>Global Change Ecology</td>
<td></td>
<td>Four</td>
</tr>
<tr>
<td></td>
<td>Provides an interdisciplinary introduction to the</td>
<td>principles of climate, ecosystems, and biogeo-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>chemistry needed to understand human impacts on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the natural environment. Students will study the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>impacts of climate warming, our changing</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>atmosphere, land-use change, altered hydrologic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and nutrient cycles, and other global changes. We</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>will examine key elements of global</td>
<td></td>
</tr>
</tbody>
</table>
ecosystem function and investigate how human activities have altered global ecosystems since the Industrial Revolution. We will critically assess scientific evidence for anthropogenic changes, and consider both impacts and solutions to the challenges of global changes. Relies heavily on reading of primary scientific literature and group participation and discussion. Prerequisite: Environmental Studies 118 and one college-level science course. Four credit hours. BRUSEWITZ

ES277f Vertebrate Natural History Listed as Biology 277. Four credit hours. BEVIER

ES279j Geology of Bermuda Listed as Geology 279. Three credit hours. RUEGER

ES282j Extreme Climate Change in the Gulf of Maine Listed as Biology 282. Three credit hours. COUNTWAY

ES283f Environmental Humanities: Stories of Crisis and Resilience Listed as English 283. Four credit hours. L. WALKER

ES297j Creative Environmental Storytelling Explores the roles of awe, mindfulness, and active imagination in environmental writing. Students will be encouraged to access their "inner hermit" and explore how, as biological beings, we can create effective storytelling to envision a future where all life thrives. Students will explore the writings of others and practice writing their own stories. Introduces the idea of the evolutionary body and how it can relate to effective engagement for positive environmental change. Three credit hours. WILLIAMS

ES319f Conservation Biology Concepts of conservation biology are examined in detail. Topics include patterns of diversity and rarity, sensitive habitats, extinction, captive propagation, preserve design, and reclamation of degraded or destroyed ecosystems. Interdisciplinary solutions to the challenges of protecting, maintaining, and restoring biological diversity are discussed. Offered in alternate years. Prerequisite: Environmental Studies 118 or 271 or Biology 263, and sophomore or higher standing. Four credit hours. NYHUS

ES328f Radical Ecologies Listed as Philosophy 328. Four credit hours. PETERSON

[ES331] Natural Resource Economics Listed as Economics 341. Prerequisite: Economics 223. Four credit hours.

ES332f Chemical Methods of Analysis Listed as Chemistry 331. Four credit hours. TEAM

ES337s Climate Fiction Listed as English 337. Four credit hours. L. WALKER

ES338s Forest Ecosystems Forest ecosystems regulate climate, store and filter water, provide food and fiber, and serve as recreational areas and sacred spaces. These ecosystems are undergoing dramatic changes with important ecological, economic, and social consequences. We will use cutting-edge methods in ecosystem science to explore how forest ecosystems are changing and how that influences the value we derive from forests. An interactive lecture and workshop-style lab will introduce a mix of practical skills and theoretical knowledge to serve as tools for understanding the causes and consequences of changing forest ecosystems. Prerequisite: Biology 237, 271 or Environmental Studies 271. Four credit hours. N, Lb. BECKNELL

[ES343] Environmental Change Investigation of the relationship between past environmental history and current ecosystem condition. Landscape change and ecological restoration across a range of Maine ecosystems including forests, wetlands, rivers, and marine environments, with an emphasis on ecological theory. The impacts of past and present human activities including forestry, fishing, and industrial and residential development. Students will read scientific literature, practice ecological field and laboratory methods, enhance data analysis and writing skills, and complete a research project designed to evaluate environmental change and recovery potential in a local landscape, riverscape, or seascape. Lecture and laboratory. Prerequisite: Environmental Studies 271 and sophomore or higher standing. Four credit hours. W2.

ES344f Marine Fisheries Management Managing marine fisheries represents one of the most significant challenges in the conservation of global resources. We explore political, cultural, and ecological factors essential for successful management. Through lectures, discussions, and readings, students become familiar with global fisheries issues, including high seas management, initiatives to protect the food security and biodiversity of tropical island nations, and management of marine and anadromous fish in the United States. Prerequisite: Biology 263 or Environmental Studies 118 or 271, and sophomore or higher standing. Four credit hours. MCCLENACHAN

ES346s Global Food Policy Examines the emergence and development of global food systems and food policies starting with the earliest agricultural societies and continuing to the present day. We explore the economic, nutritional, and environmental justice implications of agricultural systems and critically analyze the intended and actual outcomes of food policies for nations and agricultural communities. Case studies, films, and independent research further highlight the role of food and food policy in degrading the environment, exacerbating...
ethnic tensions and social inequities, and even spurring conflict. **Prerequisite:** Environmental Studies 118 and sophomore or higher standing. *Four credit hours.*

ES354 Marine Ecology Listed as Biology 354. *Three or four credit hours.*

ES356s Aquatic Ecology Concern over the impact of human activities on aquatic communities and ecosystems has brought aquatic ecology to the forefront of public attention. Through lecture, discussion, and writing assignments, students will explore the major ecological principles that influence the physical, chemical, and biological organization of aquatic ecosystems. **Prerequisite:** Environmental Studies 271, a W1 course, and sophomore or higher standing. *Three credit hours.*

ES358 Ecological Field Study in Moorea Biological diversity, ecology, and conservation of marine ecosystems in Moorea, French Polynesia. Involves qualitative and quantitative field studies of the biological diversity and ecology of coral reef ecosystems; field-based investigation of the environmental challenges facing these ecosystems; discussions with conservation practitioners about innovative conservation solutions and the efficacy of local marine protected areas; exposure to the culture and history of Polynesian Islanders, including pre-European ecosystem management practices and traditional ecological knowledge of marine biodiversity and ecosystem function. Lectures, films, and discussions of assigned readings during the first week followed by a 20-day field trip. Cost: TBD. Financial aid available for qualified students. **Prerequisite:** Biology 131 or 164 or Environmental Studies 118, and permission of the instructor. *Three credit hours.*

ES363f Paleoceanography Listed as Geology GE363. *Four credit hours.*

ES364f Climate Change, Justice, and Health Examines the impacts of changing climate dynamics on human livelihoods, rights, health, and well-being. Through interdisciplinary readings, class discussions, research projects, and innovative communications, students will engage deeply with data from the natural and social sciences about human impacts, adaptations, and vulnerabilities, as well as explore climate justice activism. Key learning goals include improved information literacy and written and oral communication skills and increased understanding of the ways climate change is impacting the world in which we live. **Prerequisite:** Environmental Studies 118. *Four credit hours.*

ES366s The Environment and Human Health How human health is affected by physical, chemical, biological, and social environments; how we use science to measure effects of these determinants at the level of cell, tissue, individual, and population; how we assess these determinants to make regulatory decisions. Topics include introductions to toxicology, epidemiology, and risk assessment; health effects of pollution, synthetic chemicals, consumer products, climate change, and the built environment; the etiology of health outcomes including cancer, obesity, endocrine disruption, and respiratory diseases. Students use primary scientific literature for independent research and, when appropriate, engage in environmental health policy debates in Congress and/or the Maine legislature. **Prerequisite:** Environmental Studies 118 or 126, and sophomore or higher standing. *Four credit hours.*

ES378 Geologic Environments in the Marine Realm Listed as Geology 378. *Three credit hours.*

ES382s Ecological Modeling Listed as Biology 382. *Four credit hours.*

ES397 Elephants and Environment in Sri Lanka An interdisciplinary field course introducing Sri Lanka through the theme of elephants. Students will gain experience with wildlife behavior and ecology, conservation policy, and the interaction of religion, culture, and environment. They will meet scientists and practitioners, undertake research, and complete a field journal. Students will meet at Colby for preparatory activities followed by three weeks in Sri Lanka. Includes visits to national parks, communities, and areas of cultural, economic, and environmental importance. Cost is $3,700. Financial aid is available for qualified students. *Three credit hours.*

ES398s Waterways and Watershed Moments in North American History Listed as History 398B. *Four credit hours.*

ES401f, ES402s Environmental Studies Colloquium Attendance at selected program colloquia during the fall and spring semesters; written reflections to be submitted. Required of all senior environmental studies majors. Typically taken in addition to a normal four-course semester. **One credit hour for the year. Prerequisite:** Senior standing in environmental studies. *Noncredit.*

ES484s Honors in Environmental Studies Majors approved for admission into the Environmental Studies Honors Program may elect this for the January Program or the spring semester. Requires research conducted under the guidance of a faculty member and focused on an approved topic leading to the writing of a thesis. A maximum of eight credits (including Environmental Studies 491 in the fall semester) may be earned in honors work. Upon successful completion of the thesis, an oral presentation, and all requirements for the major, the student will graduate with “Honors in Environmental Studies.” **Prerequisite:** Senior standing and a 3.50 grade point average in the major at...
the end of the junior year or permission of the program.

One to four credit hours.

FACULTY

ES491f, 492s Independent Study Independent study devoted to a topic chosen by the student with the approval of the program committee. Prerequisite: Junior or senior standing as an environmental studies major or minor. One to four credit hours. FACULTY

ES493f Environmental Policy Practicum An in-depth analysis of current issues and policies affecting the environment. Students work individually and collaboratively on a project with a common theme and are assigned unique roles as researchers, editors, and technical coordinators. Reading and discussion of primary literature is augmented with invited speakers, field trips, and student presentations. Prerequisite: Environmental Studies 233 (for domestic emphasis) or 234 (for international emphasis), and senior standing as an environmental studies policy major. Four credit hours. MCCLENACHAN, REYNOLDS

ES494f Problems in Environmental Science Causes of and solutions to selected environmental problems are investigated through lectures, laboratory and field work, discussions, and guest presentations. Focuses on completion of a group research project with methods used by private consulting firms and governmental agencies to investigate freshwater (section A) or marine (section B) environmental problems. Research results are presented in a public forum at the end of the semester. The civic engagement component provides useful information to the community and the state and gives students experience interacting with interested stakeholders. Skill development includes research, communication (both oral and written), and collaborative work skills. Prerequisite: Environmental Studies 271 and senior standing as an environmental science major. Five credit hours. BRUESEWITZ