GEOLOGY

Chair, Associate Professor Walter “Bill” Sullivan
Professors Robert Gastaldo and Robert Nelson; Associate Professor Walter “Bill” Sullivan; Assistant Professors Tasha Dunn and Bess Koffman; Visiting Assistant Professor Bruce Rueger

If you are interested in planet Earth—how it developed its present features and what may happen to it in the future, how it functions as a complex physical and chemical system and why we should care, where life originated and how and why our planet supports us, how the environment works and how what we do affects the world around us—a major in geology may be right for you.

The Department of Geology possesses extensive rock, mineral, and fossil collections as a basis from which to investigate Earth, a micro X-ray-fluorescence (micro-XRF) spectrometer for mapping rock and mineral elemental compositions, a powder X-ray diffractometer (XRD) for determining mineral identities, research-grade stereo and petrographic microscopes, and Logitech-equipped rock thin-section preparation equipment. The department houses the College’s scanning electron microscope (SEM) equipped with an energy-dispersive X-ray-fluorescence spectrometer for micron-scale elemental analyses. Additional research equipment available for student use, shared with other departments in the Division of Natural Sciences, includes a C,H,N,O,S elemental analyzer, an inductively coupled plasma emission spectrometer for determining elemental compositions, and the Colby Compass, a research boat equipped with an array of instrumentation for real-time environmental analyses.

Colby’s setting provides an intriguing and exciting area for field study, enabling students to integrate field and laboratory experiences. Students are encouraged to work on independent and honors projects with faculty. Research opportunities are offered routinely during the summer by departmental faculty at Colby and abroad.

Fieldwork is an integral part of many courses and introduces students to various aspects of local and regional geology. Multi-day off-campus trips are scheduled regularly to localities and areas of particular geologic interest, such as the Hartford Basin of Connecticut, the Mohawk Valley or Catskill Mountains of New York, the classic Joggins and Brule localities in Nova Scotia, and late Paleozoic rocks of New Brunswick. The department also provides off-campus international experiences, including study in Bermuda.

The Geology Department offers two major programs and a minor for students with different interests. The point scale for retention of the major applies to all courses taken in the major; no requirement may be taken satisfactory/unsatisfactory. Students should consult regularly with their advisor in selecting courses appropriate for meeting their goals for post-graduation employment and/or graduate study.

Requirements for the Major in Geology

This curriculum is designed for students seeking a preprofessional degree program. The requirements are Geology 141 and 142; four core courses that include 225, 231, and 256; four geology elective courses (numbered 200-level or higher that may include a course in mathematics, physics, chemistry, biology, or GIS); three credits of Geology 391; Geology 494 or a geology honors project; Chemistry 141; one two-semester sequence of chemistry, physics, or biology; Mathematics 122 or Statistics 212. Additional course work in chemistry, physics, and mathematics beyond the minimum requirements is strongly encouraged to broaden students’ skill sets and maximize options after graduation. Students should consult one of the major advisors in the first and second years regarding election of languages and other Colby-required courses.

Requirements for the Major in Geoscience

Geology 141 and 142; four core courses that include 225, 231, and 256; two geology elective courses (numbered 200 level or higher that may include one course in mathematics, physics, chemistry, biology, or GIS); three credits of Geology 391; Geology 494; Mathematics 122 or Statistics 212; Chemistry 141; and one additional laboratory science course in chemistry, biology, or physics.

Requirements for Honors in Geology

This program involves a substantial research component in the student’s senior year, with no fewer than six hours of credit elected in research activities. Participation in the honors program requires a 3.5 GPA in the major by the end of the junior year before a faculty sponsor can consider the project. The honors program involves presentation of a research proposal to a faculty committee early in the fall semester, submission of a midterm progress report, drafting of introductory sections before January, and submission of a full draft manuscript for committee review by spring break. Satisfactory progress will result in credit for Geology 483 and 484. Successful completion of an honors research project, and the major, will enable the student to graduate with "Honors in Geology." Students who wish to pursue an even more intensive research agenda should consider the Senior Scholars Program, an all-campus honors program in which half the student’s academic credits in the senior year are devoted exclusively to a major research project.

Requirements for the Minor in Geology

A minor in geology is available to students majoring in other disciplines who also desire an introductory understanding of the geosciences. Minor programs are tailored to the needs of individual students; course selection should be done only after consultation with the minor advisor. Requirements are Geology 141 and 142 and three geology courses selected from courses numbered 225 and above.
Course Offerings

[GE111] Geology of National Parks U.S. national parks and monuments will provide the focus for an introduction to basic geologic processes, including plate tectonics, geologic time, weathering and erosion, volcanism, earthquakes, caverns, shorelines, and the rock cycle. After an introduction to the regional geology of the United States, the focus will shift to the parks and monuments within these regions. Students will become aware of aspects of physical and historical geology, regional geography, environmental issues, the aesthetics of nature, and the interactive processes that have shaped the country. A field trip to Acadia National Park is included. Lecture only. Three credit hours. N.

GE141fs Earth and Environment The geosciences encompass the study of the Earth, its formation, its history, the processes that continue to shape it today, and our interaction with it. Students learn (1) how Earth processes operate, how they shape the environment we live in, and how they can affect people; (2) where Earth resources come from, the impacts of using these resources, and how we can reduce these impacts; and (3) the methods we use to understand these processes and impacts. Additionally, the course improves students' critical-thinking and data-analysis skills. Four credit hours. N, Lb. DUNN, RUEGER

GE142s Deep Time Planet Earth Focuses on the conceptual foundations for understanding Earth systems—lithosphere, atmosphere, hydrosphere, cryosphere, and biosphere—over the past 4.6 billion years. An appreciation will be gained for deep time, sedimentary systems, fossils, and evolutionary theory as manifested on a planet that has witnessed dramatic changes over Earth's history. Case studies include primary literature to gain insight into the interrelated nature of Earth systems and how these have shaped our current state. Includes both theoretical and practical experiences in the classroom, laboratory, and field, culminating in a required weekend field trip designed to apply components of all experiences. Credit cannot be earned for both this course and Geology 146. Prerequisite: Geology 141. Four credit hours. N, Lb. GASTALDO

[GE151] Introduction to Volcanoes and Volcanology Volcanoes have been critical in the formation of the Earth, our atmosphere, and oceans and remain integral factors in the lives of billions around the globe. Students learn (1) how Earth processes operate, how volcanic processes shaped local, regional, and global environments, and how they affected human history and will affect humankind in the future; (2) methods scientists use to understand these processes and impacts; and (3) that despite potential destruction of human infrastructure, volcanic eruptions produce benefits too. Students who have already received credit for GE141 cannot subsequently receive credit for GE151; students taking GE151 in January, however, are not barred from subsequently taking GE141 for credit. Three credit hours. N.

GE225f Mineralogy Introduces students to the methods geologists use to identify minerals and the geologic environments in which they form. Students will gain experience using the petrographic microscope, powder X-ray diffractometer, and scanning electron microscope to identify major rock-forming minerals. Students will develop interpersonal, critical-thinking, and communication skills that enable them to discuss the chemical and physical processes controlling mineral formation. Concepts learned serve as the foundation for subsequent upper-level geology courses. Prerequisite: Geology 141, 142, or 146, and Chemistry 131, 141, or 147 (may be taken concurrently). Four credit hours. N.

GE231s Structural Geology Structural geologists study the geometry of geologic structures such as faults and folds, how these structures form, their significance to the geologic history of an area, and their relationship to plate-tectonic motions. Enables students to (1) evaluate a suite of geologic structures to draw conclusions about their formation and significance, (2) apply basic structural-analysis techniques to solve problems in a variety of geoscience disciplines, and (3) develop the three-dimensional thinking skills needed to evaluate subsurface geology using two-dimensional, surficial data sets. Aims to improve students' graphical and written-communication, data-collection, and recording skills. Prerequisite: Geology 141, 142, or 146. Four credit hours. N. SULLIVAN

[GE242] Hydrogeology Examines the fundamental principles of hydrogeology and introduces geophysical techniques (surface and borehole) used to investigate flow through the subsurface. Designed to provide the tools necessary to understand and characterize groundwater systems. Topics include the hydraulic properties of rocks, aquifer storage and subsidence, flow potential, analysis of pumping tests conducted in water wells, and interpretation of geophysical field data. Includes lecture, homework from textbook, oral presentation, and analysis of a variety of geophysical logs. Previously listed as Geology 297 (Jan Plan 2014 and 2015). Prerequisite: Geology 141 or 146, and Mathematics 121, 122, or 161. Three credit hours.

[GE254] Principles of Geomorphology Geomorphology is the study of the Earth and all its surficial expression and the continuing evolution of the planet as climate-dictated surface processes seek to remold the underlying solid Earth. Students learn the processes at work in the breakdown of rocks into soils and how mountains, valleys, and all the other myriad landforms of the Earth originated. They will become familiar with the processes that result in mass-wasting events such as landslides, how streams constantly change the environment, and how wind is active in desert environments and elsewhere; they will come to appreciate the significance of glaciers in the geologic history of Maine and North America, and how coastal processes affect the lives of hundreds of millions of people worldwide. Through understanding of the processes at play in these systems, interpretations of the origin of extraterrestrial landforms also becomes possible as
GE256f Sedimentation and Stratigraphy A module-based course in which students learn how to apply sedimentary rocks to interpreting Earth's stratigraphic record and develop a fundamental understanding of sediments and resulting rock types found in Earth's sedimentary successions. Modules include (1) the analysis of drill cores from coastal deposits in the Carboniferous of Alabama, (2) field and laboratory analysis of Silurian-Devonian carbonate sequences in New York State, and (3) an exercise in which the principles of sequence stratigraphy will be modeled. Students will learn to evaluate the sedimentary rock record over space and time using currently accepted approaches and models. Previously listed as Geology 356.

Prerequisite: Geology 141, 142, or 146.

Four credit hours.

N.

GASTALDO

GE262s Earth's Climate: Past, Present, and Future Takes a systems approach to studying Earth’s climate by linking the primary systems operating at Earth's surface, i.e., lithosphere, atmosphere, biosphere, hydrosphere, cryosphere. Explores the mechanisms that shape environmental evolution across a range of time scales, including the role of humans, and uses past (paleo) records of change to place modern climate change in geological context. Students will engage with material through problem sets, data analysis, interactive lectures, primary literature synthesis, and writing. Laboratory projects will provide hands-on opportunities to develop local records of past environmental change.

Prerequisite: Geology 141.

Four credit hours.

W2.

GASTALDO

GE279j Geology of Bermuda Students will learn how the island of Bermuda, subjected to a variety of geologic processes, has evolved over the past two million years. They will be exposed to the scientific method and how geologists study the Earth, its materials, and its processes. During field and laboratory observations, students will investigate how organisms, including humans, and sedimentary processes have shaped Bermuda; how sediment is formed, moved, consolidated, and lithified; and the interrelationships between geology and biology. They will gain an appreciation of the complexities of living on an island and the anthropogenic impacts on a fragile ecosystem. Cost in 2018: $2,700.

Prerequisite: Geology 141, 142, or 146.

Three credit hours.

N.

KOFFMAN

[GE331] Plate Tectonics Primary-literature-synthesis course that guides students through the topic of plate tectonics from the development of the theory to some modern-day theories on crustal growth and plate-boundary processes. Students will be able to (1) piece together a broad-scale interpretation of the evolution of a plate boundary using data and interpretations gleaned from the primary scientific literature and (2) use basic thermochronologic, geophysical, geological, and geospatial data sets to interpret plate boundaries. Improving students’ verbal and written communication skills while providing an experience in accessing, reading, and assimilating scientific literature.

Prerequisite: Geology 231.

Four credit hours.
Chemistry 217, Environmental Studies 276, or Geology 225, 231, 254, or 256.

Four credit hours.

KOFFMAN

[GE378] Geologic Environments in the Marine Realm An understanding of marine depositional environments in a variety of settings from shallow shelf to abyssal plain and from near shore to open ocean. Also, an analysis of sediment production by weathering and erosion, marine invertebrates, and seawater to interpret depositional environment. Includes an understanding of the formation of ocean basins and marine topographic features and of the oceanic and atmospheric circulation patterns on the transport of sediment in the marine realm. Anthropogenic impact on the ocean environment will also be considered.

Prerequisite: Biology 163, Environmental Studies 118, Geology 141, 142, or 146.

Three credit hours.

KOFFMAN

[GE381] Planetary Geology Explores the geological evolution of the planets, satellites, and materials that make up our solar system. Using Earth as an analog, students will study geological processes, such as volcanism, tectonism, and impact cratering, on other planetary bodies. They will learn how to utilize a variety of remote-sensing data sets to interpret the geologic history of planetary bodies. Students will also develop problem solving, critical thinking, and communication skills.

Prerequisite: Geology 225.

Four credit hours.

KOFFMAN

GE391fs Geology Seminar Paper discussions and presentations from invited guest lecturers on topics of current interest in all areas of the geosciences. Majors must complete three seminars during their course of study. Nongraded.

One credit hour.

GASTALDO, SULLIVAN

GE483j Senior Honors Project A culminating, research-intensive experience in which students engage in an original project with the expectation that results will be of significantly high caliber to warrant publication after review by committee. The final written report will be in a selected journal format, and project results will be presented formally in a professional context. Students should consult with major advisors during their junior year to learn about on-campus and off-campus opportunities and experiences that can be used in preparation for undertaking an honors program.

Prerequisite: Permission of the instructor.

Three or four credit hours.

FACULTY

GE483Jj Senior Honors Project Noncredit.

GASTALDO

GE491f, 492s Independent Study Independent research experience supervised by a faculty member. Research projects earning three or more credit hours over one or more semesters require a final written report and a formal presentation in a professional setting.

Prerequisite: Permission of the instructor.

One to four credit hours.

FACULTY

GE493 Problems in Geosciences: Applied Research This directed-research course will engage students in evaluation of a significant geologic problem. Topics and prerequisites will vary depending on which instructor is offering the course.

Prerequisite: Permission of the instructor.

Four credit hours.

FACULTY

GE494s Topics in Extraterrestrial Geology A capstone experience in which students explore a cutting-edge scientific topic in great depth. Students will hone skills introduced throughout the geology and geoscience majors including assimilating, analyzing, and interpreting the scientific literature and communicating in writing, orally, and graphically. Students will also gain experience communicating specialized scientific topics to a general audience. During spring 2018, student projects will focus on some aspect of solar system and/or planetary evolution.

Prerequisite: Senior standing.

Four credit hours.

W3.

DUNN

Generated March 4, 2018, on colby.edu

Colby College 2017-2018 Catalogue