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Introduction to Molecular Mechanics 
Section 1 

 

Summary   The goal of molecular mechanics is to predict the detailed structure and physical 
properties of molecules. Examples of physical properties that can be calculated include 
enthalpies of formation, entropies, dipole moments, and strain energies. Molecular mechanics 
calculates the energy of a molecule and then adjusts the energy through changes in bond lengths 
and angles to obtain the minimum energy structure. 
 

Steric Energy 
   A molecule can possess different kinds of energy such as bond and thermal energy. Molecular 
mechanics calculates the steric energy of a molecule--the energy due to the geometry or 
conformation of a molecule. Energy is minimized in nature, and the conformation of a molecule 
that is favored is the lowest energy conformation. Knowledge of the conformation of a molecule 
is important because the structure of a molecule often has a great effect on its reactivity. The 
effect of structure on reactivity is important for large molecules like proteins. Studies of the 
conformation of proteins are difficult and therefore interesting, because their size makes many 
different conformations possible. 
   Molecular mechanics assumes the steric energy of a molecule to arise from a few, specific 
interactions within a molecule. These interactions include the stretching or compressing of bonds 
beyond their equilibrium lengths and angles, torsional effects of twisting about single bonds, the 
Van der Waals attractions or repulsions of atoms that come close together, and the electrostatic 
interactions between partial charges in a molecule due to polar bonds. To quantify the 
contribution of each, these interactions can be modeled by a potential function that gives the 
energy of the interaction as a function of distance, angle, or charge1,2. The total steric energy of a 
molecule can be written as a sum of the energies of the interactions: 
 

 Esteric energy = Estr + Ebend + Estr-bend + Eoop + Etor + EVdW + Eqq   (1) 
 

The bond stretching, bending, stretch-bend, out of plane, and torsion interactions are called 
bonded interactions because the atoms involved must be directly bonded or bonded to a common 
atom. The Van der Waals and electrostatic (qq) interactions are between non-bonded atoms. 
 

Bonded Interactions 
Estr  represents the energy required to stretch or compress a bond between two atoms, Figure 1.  

 

0

50

100

150

200

250

300

350

0 1 2 3

r ij  (Å)

E st
r 

(k
ca

l/m
ol

)

r ij

compressed

equilibrium

stretched

Figure 1.  Bond Stretching 



 5 

A bond can be thought of as a spring having its own equilibrium length, ro, and the energy 
required to stretch or compress it can be approximated by the Hookian potential for an ideal 
spring: 
 Estr = 1/2 ks,ij ( rij  - ro )2        (2) 
 
where ks,ij is the stretching force constant for the bond and rij is the distance between the two 
atoms, Figure 1. 
 

Ebend is the energy required to bend a bond from its equilibrium angle, θo. Again this system can 
be modeled by a spring, and the energy is given by the Hookian potential with respect to angle: 
 Ebend = 1/2 kb,ijk ( θijk  - θο )2        (3) 
 

where kb,ijk is the bending force constant and θijk  is the instantaneous bond angle (Figure 2). 
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Figure 2. Bond Bending 
 
Estr-bend is the stretch-bend interaction energy that takes into account the observation that when a 
bond is bent, the two associated bond lengths increase (Figure 3). The potential function that can 
model this interaction is: 
 Estr-bend = 1/2 ksb,ijk ( rij  - ro ) (θijk  - θo )      (4) 
 

where ksb,ijk is the stretch-bend force constant for the bond between atoms i and j with the bend 
between atoms  i, j, and k. 
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Figure 3. Stretch-Bend Interaction 
 

Eoop is the energy required to deform a planar group of atoms from its equilibrium angle, ωo, 
usually equal to zero.3 This force field term is useful for sp2 hybridized atoms such as doubly 
bonded carbon atoms, and some small ring systems. Again this system can be modeled by a 
spring, and the energy is given by the Hookian potential with respect to planar angle: 
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 Eoop = 1/2 ko,ijkl ( ωijkl  - ωο )2      (5) 
 

where ko,ijkl is the bending force constant and ωijkl  is the instantaneous bond angle (Figure 4). 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 4. Out of Plane Bending 
 
 
The out of plane term is also called the improper torsion in some force fields. The oop term is 
called the improper torsion, because like a dihedral torsion (see below) the term depends on four 
atoms, but the atoms are numbered in a different order. Force fields differ greatly in their use of 
oop terms. Most force fields use oop terms for the carbonyl carbon and the amide nitrogen in 
peptide bonds, which are planar (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Peptide Bond is Planar. 
 
Torsional Interactions:  Etor is the energy of torsion needed to rotate about bonds. Torsional 
energies are usually important only for single bonds because double and triple bonds are too rigid 
to permit rotation. Torsional interactions are modeled by the potential: 
 

 Etor = 1/2 ktor,1 (1 + cos φ ) +1/2 ktor,2 (1 + cos 2 φ ) + 1/2 ktor,3 ( 1 + cos 3 φ ) (6) 
 

The angle φ is the dihedral angle about the bond. The constants ktor,1, ktor,2 and ktor,3 are the 
torsional constants for one-fold, two-fold and three-fold rotational barriers, respectively. The 
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three-fold term, that is the term in 3φ, is important for sp3 hybridized systems ( Figure 6a and b ). 
The two-fold term, in 2φ, is needed for example in F-C-C-F and sp2 hybridized systems, such as 
C-C-C=O and vinyl alcohols1.  The one-fold term in just φ is useful for alcohols with the C-C-O-
H torsion, carbonyl torsions like C-C-C(carbonyl)-C, and the central bond in molecules such as 
butane that have C-C-C-C frameworks (Figure 6c). 
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Figure 6. Torsional Interactions, (a) dihedral angle in sp3systems. (b) three-fold, 3φ, rotational 
energy barrier in ethane. (c) butane, which also has a contribution of a one fold, φ, barrier. 
 
   The origin of the torsional interaction is not well understood. Torsion energies are rationalized 
by some authors as a repulsion between the bonds of groups attached to a central, rotating bond ( 
i.e., C-C-C-C frameworks). Torsion terms were originally used as a fudge factor to correct for the 
other energy terms when they did not accurately predict steric energies for bond twisting. For 
example, the interactions of the methyl groups and hydrogens on the "front" and "back" carbons 
in butane were thought to be Van der Waals in nature (Figure 7). However, the Van der Waals  
function alone gives an inaccurate value for the steric energy. 
   Bonded Interactions Summary: Therefore, when intramolecular interactions stretch, compress, 
or bend a bond from its equilibrium length and angle, the bonds resist these changes with an 
energy given by the above equations summed over all bonds. When the bonds cannot relax back 
to their equilibrium positions, this energy raises the steric energy of the entire molecule. 
 
 
Non-bonded Interactions 
Van der Waals interactions, which are responsible for the liquefaction of non-polar gases like O2 
and N2, also govern the energy of interaction of non-bonded atoms within a molecule. These 
interactions contribute to the steric interactions in molecules and are often the most important 
factors in determining the overall molecular conformation (shape). Such interactions are 
extremely important in determining the three-dimensional structure of many biomolecules, 
especially proteins. 
 

   A plot of the Van der Waals energy as a function of distance between two hydrogen atoms is 
shown in Figure 7. When two atoms are far apart, an attraction is felt. When two atoms are very 
close together, a strong repulsion is present. Although both attractive and repulsive forces exist, 
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the repulsions are often the most important for determining the shapes of molecules. A measure 
of the size of an atom is its Van der Waals radius. The distance that gives the lowest, most 
favorable energy of interaction between two atoms is the sum of their Van der Waals radii. The 
lowest point on the curve in Figure 7 is this point. Interactions of two nuclei separated by more 
than the minimum energy distance are governed by the attractive forces between the atoms. At 
distances smaller than the minimum energy distance, repulsions dominate the interaction. The 
formula for the Van der Waals energy is: 
 

 EVdW,ij = - 
A

rij6
   + 

B

rij12         (7) 

 

where A and B are constants dependent upon the identities of the two atoms involved and rij  is 
the distance, in Angstroms, separating the two nuclei. This equation is also called the Lennard-
Jones potential. Since, by definition, lower energy is more favorable, the - A/r6 part is the 
attractive part and the  + B/r12 part is the repulsive part of the interaction. For two hydrogen 
atoms in a molecule:  

A = 70.38 kcal Å6  B = 6286. kcal Å12 
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Figure 7: Van der Waals interactions between two hydrogen atoms in a molecule, such 

as H2O2 or CH3-CH3 
 
   An equivalent and commonly used form of the Lennard-Jones potential is 
 

  EVdW,ij = ε 






– 
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

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
ro

rij

6
 + 





ro

rij

12
      (8) 

Where ε is the minimum energy and ro is the sum of the Van der Waals radii of the two atoms, 
ri+ rj. Comparing Eq 7 and 8 gives A = 2 ro

6 ε and B = ro
12 ε. For two hydrogens, as in Figure 7, ε 

= 0.195 kcal/mol and ro = 2.376 Å. When looking for close contacts between atoms it is best to 
use the hard-core Van der Waals radius, σHC . This distance is the point where the Van der Waals 
potential is zero. When two atoms are closer than the sum of their σHC values then strong 
repulsions are present. For an atom σHC = 2-1/6 ri.  



 9 

Electrostatic Interactions:  If bonds in the molecule are polar, partial electrostatic charges will 
reside on the atoms. The electrostatic interactions are represented with a Coulombic potential 
function: 

  Eqq,ij   =   
c Qi Qj

4πεr rij
         (9) 

 

The Qi and Qj are the partial atomic charges for atoms i and j separated by a distance rij . εr is the 
relative dielectric constant. For gas phase calculations ε is normally set to1. Larger values of 
εr are used to approximate the dielectric effect of intervening solute or solvent atoms in solution. 
c is a units conversion constant; for kcal/mol, c =4172.8 kcal mol-1 Å. Like charges raise the 
steric energy, while opposite charges lower the energy. The Del Re method is often used for 
estimating partial charges. The Coulomb potential for a unit positive and negative charge is 
shown in Figure 8a and the Coulomb potential for the hydrogens in H2O2 is shown in Figure 8b. 

Figure 8. (a) Coulomb attraction of a positive and a negative charge. (b) Coulomb repulsion of 
the two hydrogens in H2O2, with the charge on each hydrogen as Q1 = Q2 = 0.210. 
 
   Nonbonded Summary: The Van der Waals and electrostatic potential functions represent the 
various non-bonded interactions that can occur between two atoms i and j. A full force field 
determines the steric energy by summing these potentials over all pairs of atoms in the molecule. 
   The bond stretching, bond bending, stretch-bend, out-of-plane, torsion, Van der Waals, and 
electrostatic interactions are said to make up a force field. Each interaction causes a steric force 
that the molecule must adjust to in finding its lowest energy conformation. 
 
Empirical Force Fields 
All the potential functions above involve some force constant or interaction constant. 
Theoretically, these constants should be available from quantum mechanical calculations. In 
practice, however, it is necessary to derive them empirically. That is, the constants are adjusted 
so that the detailed geometry is properly predicted for a number of well known compounds. 
These constants are then used to calculate the structures of new compounds. The accuracy of 
these constants is critical to molecular mechanics calculations. Unfortunately, no single best set 
of force constants is available because of the diversity of types of compounds. For example, the 
MM2 force field works best on hydrocarbons because most of the known compounds used in 
deriving the force field were hydrocarbons1. MM2 is less accurate for oxygen-containing 
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compounds and even less reliable for nitrogen and sulfur species. This is because there aren't as 
many hetero-atom containing compounds in the learning set for MM2 and hydrocarbons are a 
more homogeneous class of compounds than substances with hetero-atoms. However, the MM2 
force field is one of the best available and the most widely accepted force field for use with 
organic compounds. MM2 was specifically parameterized to reproduce experimental enthalpies 
of formation.1 

   It is important to realize that the force field is not absolute, in that not all the interactions listed 
in Equation 1 may be necessary to accurately predict the steric energy of a molecule. On the other 
hand, many force fields use additional terms. For example, MM2 adds terms to the bonded 
interactions to better approximate the real potential function of a chemical bond. These additional 
terms take into account anharmonicity, which is a result of the fact that given enough vibrational 
energy, bonds will break. Purely quadratic potentials have steep "walls" that prevent bond 
dissociation (Figure 9a). Cubic terms are added to Equation 2 to adjust for this: 

 

 Estr = 1/2 ks,ij (rij – ro)2 – 1/2 ks,ij Cs (rij – ro)3    (10) 
 

where Cs  is the cubic stretch constant. For example, for a C(sp3)-C(sp3) bond the cubic stretch 
constant is 2.00 Å-1, see Figure 9b: 
 

Estr = 317 kcal/mol/Å2 (r – 1.532 Å)2 – 317 kcal/mol/Å2 [2.00 Å-1] (r – 1.532 Å)3  (11) 
 

The addition of the cubic term makes the small r portion steeper or more repulsive. This is 
realistic for real bonds. At larger r the curve is less steep, as desired. For r very large (r > 3Å) the 
energy decreases, which is unphysical; the curve should approach a constant value. Even though 
the large r behavior is incorrect, the bond length in compounds remains less than this value, so 
this region is unimportant under normal conditions. Some force fields add a quartic term,  
(rij – ro)4, to help improve the large r behavior. 
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Figure 9. (a). Energy for the stretching of a C-C bond with only the (r-ro)2 harmonic term., Eq. 2 
(b), Comparison of the harmonic term with Eq. 8, which includes the (r-ro)3 term for 
anharmonicity. 
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Force Field Atom Types and Parameters 
   MM2 is a good example of a molecular mechanics force field. The force constants will give a 
good idea of what typical force constants are like. The first step in starting a calculation is to 
identify the different atom types in the molecule. In some programs this must be done manually 
by the user. In many programs a routine does this step automatically. However, automatic atom 
type assignments can be incorrect, and the user should check to make sure the atom types are 
assigned properly. A list of some MM2 atom types is given in Table 1. 
 
 
Table 1. MM2 Atom types. The typical atom symbol is listed and the radius used in the Van der 
Waals force field term and approximate Van der Waals radii for judging close contacts. 
 

Atom Type atom Description Type R (Å) σHC (Å) 
1 C C(sp3) C 1.969 1.75 
2 C C(sp2) alkene  Csp2 2.097 1.87 
3 C C(sp2) carbonyl  C= 1.992 1.77 
4 C C(sp) alkyne; C=C=O  Csp 2.077 1.85 
5 H Attached to C and Si  HC 1.485 1.32 
6 O C-O-H, C-O-C  O 1.779 1.58 
7 O =O carbonyl  O= 1.746 1.56 
8 N N(sp3)  N 2.014 1.79 
9 N N(sp2) amide  NC=O 1.894 1.69 
10 N N(sp)  #N 1.945 1.73 
11 F Fluoride  F 1.496 1.33 
12 Cl Chloride  CL 2.044 1.82 
15 S -S- sulfide  S 2.185 1.95 
16 S+ >S+, sulfonium  >S+ 2.333 2.08 
17 S >S=O,  sulfoxide  >SO 2.128 1.90 
18 S >SO2,  sulfone  SO2 1.998 1.78 
20 LP Lone pair LP 1.969 1.75 
21 H -OH alcohol  HO 1.307 1.16 
22 C cyclopropane  CR3R 1.992 1.77 
23 H NH amine  HN 1.307 1.16 
24 H COOH carboxyl  HOCO 1.307 1.16 
28 H H on N(sp2); amide  HN2 1.307 1.16 
36 H ammonium  HN+ 1.497 1.33 
37 N -N= ; pyridine  NPYD 1.820 1.62 
39 N N+(sp3); ammonium  N+ 2.250 2.00 
40 N N(sp2); pyrrole  NPYL 1.900 1.69 
46 N NO2; nitro, nitrate  NO3 1.740 1.55 
47 O carboxylate  OM 2.052 1.83 

MM2 types up to type 28 are similar to MMFF types, however imines are type 9, amides 
are type 10, terminal S in S=C type 16, and C(sp3) in four membered rings are type 20 in 
MMFF. For MM2 types: http://europa.chem.uga.edu/allinger/mm2mm3/mm2_type.html 
 

 
   MM2 uses the Buckingham equation instead of the Lennard-Jones equation for the Van der 
Waals interaction. The general form of the Buckingham equation for the Van der Waals potential 
energy is: 

 EVdW,ij = ε 






6

α-6
 e-α(rij-ro)/ro - 

α
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


ro
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6
      (12) 
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This potential uses the r6 attractive part of the Lennard-Jones functional form, Eq. 7. The 
exponential part of the Buckingham potential matches the repulsive part of the Lennard-Jones 6-
12 potential best with an α of 14-15. However, MM2 uses a “softer” repulsion of α=12.5: 
 

 EVdW,ij = ε 








 e-12.5 rij/ro - 2.25 





ro

rij

6
      (13) 

   The MM2 force field shows that equilibrium bond lengths and angles change depending on 
hybridization and bonding partners. In Table 2 are listed the bond parameters that MM2 uses in 
its force field for a few bond types. These parameters are the starting point for energy 
minimizations. Any deviations from these equilibrium distance and angle values will be reflected 
in increases in steric energy. These parameters are derived by finding the "best fit" to 
experimental data for a reference set of compounds. This reference set of compounds is often 
called the learning set. The learning set experimental data is from electron and x-ray diffraction 
studies. (The k’s are for the quadratic terms, there are also cubic and quartic terms included to 
account for anharmonicity.) The values in Table 2 are provided to show you typical values for the 
various force constants. 
 
 Table 2. MM2 force field parameters, bond stretch and bend. 
Bond ro (Å) k (kcal/Å) Angle θo  k (kcal/rad2) 
C-C 1.523 317 C-C-C 109.47 32.4 
C-O 1.407 386 C-C-O 107.5 50.4 
Csp2*-C 1.497 360 C-Csp2-C 117.2 32.4 
   Csp2-C-C 109.47 32.4 
C(carbonyl)-C 1.509 317 C-C(carbonyl)-C 116.60 28.8 
   C(carbonyl)-C-C 107.80 32.4 
C=O 1.208 777 C-C=O 122.50 67.5 
H-C 1.113 331 H-C-H 109.40 23.0 
   H-C-C 109.39 25.9 
H-O 0.942 331 H-O-C 106.90 57.1 
* sp2 hybridized but not conjugated. 
 
 
A typical stretch-bend interaction constant is the value for C-C-C of 8.6 kcal/Å/radian. A typical 
oop force constant is the value for >C=C of 2.16 kcal/radian. For torsional force constants, the 
expansion for the C-C-C-C torsion has one, two, and three fold terms: 
 

Etor = 0.051 (1 + cos φ ) – 0.341 (1 + cos 2 φ ) + 0.166 ( 1 + cos 3 φ )  (14) 
 

When the different units of distance and angle are considered, these values show that typically 
the force constants have relative sizes of: 
 

  Stretch >> bend > stretch-bend ~ out-of-plane > torsion 
 

In other words, it is difficult to stretch a bond, easier to bend a bond, and very easy to twist a 
bond if it is singly bonded. 
   The peptide bond is particularly important, since it is the linkage between amino acids in 
proteins. Figure 8 shows the peptide bond with the MM2 type force constants for a stretch, bend, 
and oop bend. 
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Figure 8. MM2 force field parameters for the amide nitrogen in a peptide bond. 
 

 
MMFF and MM2   The Merck Molecular Force Field, MMFF, is also a very commonly used 
force field.4-6 Example parameters for the MMFF force field are given in Tables 3 and 4 so that 
you can compare the different parameters from one force field to another. MMFF uses a 14-7 
Van der Waals term instead of the more common 12-6 Lennard-Jones or Buckingham potential. 
Overall MMFF has more terms in the force field, including cubic and quartic terms in the bond 
stretch, and cubic terms in angle bending potential energy. Notice that there are large differences 
between MM2 and MMFF. The differences show that the specific terms in the force field make a 
big difference in the overall parameters. These differences also show that parameters are not 
transferable from one force field to another. 
 
Table 3. Some MMFF Atom types.  
 

Atom Type atom Description Type R (Å) 
1 C C(sp3) C 1.969 
2 C C(sp2) alkene  Csp2 2.097 
3 C C(sp2) carbonyl  C= 1.992 
4 C C(sp) alkyne; C=C=O  Csp 2.077 
5 H Attached to C and Si  HC 1.485 
6 O C-O-H, C-O-C  O 1.779 
7 O =O carbonyl  O= 1.746 
8 N N(sp3)  N 2.014 
9 N N(sp2) imines  N=C 1.894 
10 N N(sp2) amides NC=O 1.945 
11 F Fluoride  F 1.496 
12 Cl Chloride  CL 2.044 
15 S -S- sulfide  S 2.185 
16 S Terminal S=C  S=C 2.333 
17 S >S=O,  sulfoxide  >SN 2.128 
18 S >SO2,  sulfones and sulfates  SO2 1.998 
20 C C(sp3) in 4-membered ring  CR4R 1.969 
21 H -OH alcohol  HO 1.307 
22 C cyclopropane  CR3R 1.992 

 
Table 4. MMFF94 force field parameters, bond stretch and bend. The MMFF has an additional 
cubic and quartic term in the bond stretch for which the constants are not shown. 

H 

N 

C 

O 

453 kcal/Å 

43 kcal/° 

Oop: 1.51 kcal/° 
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Bond ro (Å) k (kcal/Å) Angle θo  k (kcal/rad2) 

C-C- 1.508 306 C-C-C 109.61 61.2 
C-O 1.418 363 C-C-O 108.13 71.4 

Csp2*-C 1.482 339 C-Csp2-C 118.04 54.1 

   Csp2-C-C 109.44 53.0 

C(carbonyl)-C 1.492 302 C-C(carbonyl)-C 118.02 82.8 
   C(carbonyl)-C-C 107.52 55.9 
C=O 1.222 932 C-C=O 124.41 67.5 
H-C 1.093 343 H-C-H 108.84 37.1 
   H-C-C 110.55 45.8 
H-O 0.972 561 H-O-C 106.50 57.1 

* sp2 hybridized but not conjugated. 
 
Note that even though the MMFF C-C ro is listed as 1.508 Å the minimized central C-C bond length 
in butane is 1.527 Å. This compromise bond length takes into account the cubic and quartic terms in the 
bond stretch term in conjunction with the Van der Waals replusions for the attached hydrogens. So even 
in the case of "unstrained" butane, the central C-C stretch energy is 0.114 kcal/mol and the final bond 
length is greater than ro as set in the force field. The minimized central C-C bond in butane using MM2 
is 1.531 Å showing the same effect, but not the same magnitude of increase from the force field ro value 
of 1.523 Å. 
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Introduction Section 2 
Enthalpy of Formation 

 
The steric energy of a molecule can be used to calculate the enthalpy of formation. First, the 
steric energy is calculated from Equation 1. Then a bond energy calculation is done using 
standard tabular values. The bond energy, or enthalpy, is the energy needed to make all the 
chemical bonds in the molecule starting from the elements in their standards states. It is 
customary to use bond increments rather than the bond energy calculations that you did in 
General Chemistry for the bond energy calculation. However, the principle is the same. Thermal 
energy terms must then be added to account for the energy of translation and rotation of the 
molecule. The energy of translation (x, y, z motion of the center of mass of the molecule) is 
3/2RT. The rotational energy of a non-linear molecule is also 3/2RT (1/2RT for each rotational 
axis).  
   The steric energy calculation in molecular mechanics corresponds to an internal energy 
calculation. Since ∆H=∆U+∆(PV), PV=nRT for an ideal gas, and we want the molar enthalpy of 
formation with n=1, we must also add RT to convert from internal energy to enthalpy. 
   We have not yet considered molecular vibrations, especially internal rotations. In principle, 
every vibration, including internal rotations, contributes to the enthalpy. However, the 
contribution of vibrations is difficult to calculate. In practice the contributions are often small so 
they can be ignored. However, the internal rotation of the methyl group is always included; in 
fact the effect is automatically included in the bond increment calculation. For careful work extra 
terms must also be added for non-methyl free internal rotations. This contribution, which is 
called the torsional increment, is estimated as 0.36 kcal/mol or 1.51 kJ mol-1 for each internal 
rotation1. For example, butane, CH3-CH2-CH2-CH3, has one additional internal rotation, other 
than the methyl group rotations; so the torsional increment for butane would be 0.36 kcal/mol. In 
summary the enthalpy of formation for non-linear molecules is then, 
 
 ∆fH° = 3/2RT + 3/2RT + RT + bond energy + steric energy + torsional increments     (1) 
 
This formula also assumes that there is only one low energy conformation of the molecule. If 
there are several low energy conformations, each must be accounted for in Equation 1. 
 
Bond Energy 
   You are familiar with bond energy calculations from General Chemistry. The energy of a 
molecule is assumed to be an additive function of the energy of individual bonds (Table I). The 
∆rH for a reaction is given from ∆H°(bonds broken)- ∆H°(bonds formed). 
 
Table I. Bond Enthalpies, ∆H°(A-B)  (kJ/mol) 
 H C O 
H 436   
C 412 348 – 

612 = 
 

O 463 360 – 
743 = 

146 – 
497 = 

C (graph) -> C (g)          ∆H°= 716.7 kJ/mol  
 
For example, the enthalpy of formation of acetaldehyde is calculated as: 



 16 

 
  2 C(graph) + 2 H2 (g) + 1/2 O2 (g)  ->  CH3-CH=O (g) 
 
 # Bonds Broken   - # Bonds Formed  
 2    C (graph) 2    (716.7 kJ/mol)  1   C=O      743 kJ/mol 
 2    H-H 2    (436 kJ/mol)  4   C-H 4      (412 kJ/mol) 
 1/2 O=O 1/2 (497 kJ/mol)  1   C-C       348 kJ/mol 
 total         2553.9 kJ/mol - total       2739 kJ/mol  =  -185.1 kJ 
 
The experimental value is  -166.19 kJ, so the value derived from Table I is not very accurate. 
 
   The bond energy calculations in molecular mechanics are done slightly differently, using bond 
increments. Again the bond energies are assumed to be additive. The contributions are taken not 
only from each bond, but increments are added for certain structures, such as tertiary carbon 
linkages. The bond energy calculation for acetaldehyde from the MM2 program is given below, 
with energies in kcal. MM2 also calculates entropies, which are also listed for your interest. 
 
 #   Bond or Structure  Each  Total   Tot S contrib. 
 3   C-H ALIPHATIC  -3.205    -9.615  38.700 
 1   C=O   -25.00   -25.00   -2.300 
 1   C-H ALDEHYDE  -2.500    -2.500  26.800 
 1   C-C SP3-SP2 C=O  -3.000    -3.000  -0.600 
 1   ME-CARBONYL  -2.000    -2.000  ______ 
     bond energy = -42.115 kcal    S° =  62.600 cal/K 
 
The bond energy is -42.115 kcal or -176.2 kJ. However, caution should be used since these 
calculations are designed to be used in conjunction with steric energies in a molecular mechanics 
calculation and not as general bond energy values. Using Equation 1, with the steric energy 
calculated by molecular mechanics gives the final ∆fH° = -169.33 kJ/mol, which is a significant 
improvement over the bond energy calculation from Table I of  -185.1 kJ. 
 
 
 
 
 
References: 
1. Pitzer, Kenneth S., Quantum Chemistry, Prentice-Hall, New York, NY, 1953, pp 239-243, 
Appendix 18, pp 492-500. 
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Introduction Section 3 
Comparing Steric Energies 

 
   You must be careful when comparing steric energies from molecular mechanics calculations. 
Strictly speaking you can only compare steric energies directly for conformational isomers or 
geometric isomers that have the same number and types of bonds. Some examples using MM2 
will make this important point clearer. 
 
Example 1: Different number of atoms: 
 
Table 1 gives the MM2 results for pentane, hexane, and heptane. First note that each of the 
individual force field terms and the total steric energy increase on going from pentane to hexane 
to heptane. It would be tempting to conclude that the larger molecules have “more steric 
hindrance” from these numbers, but this would be incorrect. Rather, the changes are caused by 
the fact that you are simply adding more atoms so the number of terms in the force field are 
increasing causing the molecule’s totals to increase. This conclusion is reinforced by the MM2 
sigma strain energy results that show each molecule to have no strain energy. This example 
shows that you can’t directly compare steric energies for molecules with different numbers of 
atoms. 
   MM2, MMX, and MM3, however, take the molecular mechanics calculation one step further. 
The use of bond enthalpy calculations to calculate the enthalpy of formation for the molecule 
adjusts for the new bonds that are formed as the molecular size increases. Enthalpies of 
formation can be compared directly. For example, the bond enthalpy and enthalpy of formation 
from MM2 are also shown in Table 1. These results show correctly that the enthalpy of formation 
of these molecules decreases with size, even though the total steric energy is increasing. The 
enthalpies of formation can, of course, be used to calculate the enthalpies for any reactions using 
pentane, hexane, and heptane. 
 
Table 1. MM2 results for linear C5, C6, and C7 hydrocarbons and branched C5 hydrocarbons. 
 
kcal/mol Pentane Hexane Heptane 2-Methylbutane 2,2-Dimethylpropane 
Bond Stretch 0.2267 0.2968 0.3664 0.3180 0.4038 
Bending 0.3797 0.4689 0.5553 0.6512 0.3308 
Stretch-bend 0.0731 0.0938 0.1142 0.0969 0.0641 
Lennard-Jones 2.1316 2.5911 3.0512 2.0967 1.4712 
Dihedral 0.0116 0.0161 0.0212 0.4649 0 
Total Steric 2.8226 3.4667 4.1084 3.6279 2.2699 
Bond Enthalpy -41.50 -47.91 -54.32 -42.93 -45.22 
Sigma Strain 0 0 0 1.03 0 
Enthalpy of 
Formation 

-36.27 -42.04 -47.82 -36.90 -40.55 

 
   The bond enthalpy calculations in MM2 are done using tabulated values for bond increments 
for each specific bond and chemical environment. See the enthalpy of formation discussion 
earlier in this manual for more information. The sigma strain energy calculations in MM2 are 
done using similarly tabulated increments for each specific bond and chemical environment, but 
in a hypothetical “strainless environment.” Differences in total enthalpy of the values based on 
the actual and the strainless bond enthalpies give the sigma strain energy. 
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Example 2: Same formula different types of bonds: 
 
Table 1 also has the MM2 results for the branched pentanes, 2-methylbutane and 2,2-
dimethylpropane, to compare with linear pentane. The corresponding structures are shown in 
Figure 1. Each isomer has the same number of atoms and the same number of C-H and C-C 
bonds. Here again, however, comparing steric energies directly is dangerous. The higher steric 
energy of pentane compared to 2,2-dimethylpropane does not indicate that linear pentane has 
“more steric hindrance.” Rather, both linear pentane and 2,2-dimethylpropane show no sigma 
strain. Likewise, both branched pentanes have lower enthalpies of formation than the linear 
isomer. Even though all three isomers have the same number of C-H and C-C bonds, the C-C 
bond energy increases with increased branching. That is, a tertiary C-C bond is more stable than 
a secondary, which is more stable than a primary.  

Once again, the final enthalpy of 
formation calculations adjust for 
these bond strength differences and 
are then directly comparable. Does 
this mean that the steric energies by 
themsleves are useless? No, you 
just need to be careful when doing 
comparisons.  
   For example, why does 2-

methylbutane have a higher steric energy than linear pentane? The Lennard-Jones term is actually 
lower in energy for the branched isomer, because of favorable, attractive Van der Waals 
interactions. Looking at the other force field terms, we see that the dihedral terms increase the 
most. The increase in the branched isomer results from a gauche interaction. Draw a Newman 
projection to show that this is so. This example shows that comparing steric energies, and in 
particular, comparing the different force field terms can be very helpful in understanding the 
energetics of the molecule, especially for geometric isomers. Remember that, however, it is the 
enthalpy of formation of the molecule that determines its reactivity and the enthalpy of formation 
may or may not follow the same trends as you compare one geometric isomer to another. 
   An analogy might help. One person may be taller than another, but the taller person may not be 
the better basketball player. It is fair to compare the height of two individuals, but basketball 
ability depends on many more things than height alone. 
 
 
Example 3: Making fair comparisons: 
 
   Most biostructure molecular mechanics programs don’t use MM2 or MM3, so that the sigma 
strain energy and the enthalpy of formation are not calculated. In addition, MM2 and MM3 have 
limited parameter sets, so your compound of interest may not run with MM2 and MM3, and you 
must use a different force field. How can you make fair comparisons if you can’t get the enthalpy 
of formation? Often, it is possible to build a reference structure and then look at differences with 
the reference structure as a fair comparison. To illustrate this point we will look at the strain 
energy of five, six and seven membered rings, Table 2. We will use MM2 results to check our 
comparisons, to make sure our reference structures provide a fair comparison. But the utility of 
building reference structures is really most useful when MM2 isn’t available. 
 

pentane 2-methylbutane 2,2-dimethylpropane 

Figure 1. Pentane geometric isomers 
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Table 2. MM2 Results for five, six and seven membered hydrocarbon rings. 
 
kcal/mol Cyclopentane Cyclohexane Cycloheptane 
Bond Stretch 0.3264 0.3374 0.4116 
Bending 2.1899 0.3652 2.8389 
Stretch-bend -0.0976 0.0826 0.2399 
Lennard-Jones 2.6501 3.6100 5.3694 
Dihedral 6.3279 2.1556 5.4476 
Total Steric 11.4049 6.5510 14.3075 
Bond Enthalpy -32.07 -38.48 -44.90 
Sigma Strain 8.12 2.61 9.71 
Enthalpy of 
Formation 

-18.27 -29.53 -28.19 

(Cyclic-Linear) 
Steric Energy 

8.58 3.08 10.20 

 
First note that the total steric energy and the enthalpy of formation follow completely different 
trends. Therefore, the steric energy is a poor predictor of chemical reactivity. This example is 
similar to Example 1, above, in that the molecules we wish to compare have increasing numbers 
of atoms. However, the strain energy of rings is an important concept and has helped to guide 
organic chemist’s intuition about chemical reactivity for over a century. Of course, MM2 
calculates the strain energy, and we get the expected order cyclohexane< cyclopentane< 
cycloheptane. Students are often surprised at this order, thinking that the cyclopentane ring is 
unusually strained, but this is not so in comparison with cycloheptane. 
   We can make a fair comparison of the ring strain energies of these molecules by comparing 
each cyclic structure with a linear reference structure. The reference structure is just the cyclic 
molecule “opened up.” We then compare this difference in energy for the cyclopentane, 
cyclohexane, and cycloheptane rings. In Table 2 is listed the difference in steric energy between 
the cyclic structure and the linear structure. These differences mirror the MM2 strain energies 
nicely. The difference with the linear reference structure is successful in finding the strain energy 
because the difference between the cyclic and linear form is the breaking of two C-H bonds and 
the formation of a new C-C bond for each of our cyclic molecules. Using the differences in 
energy then makes the comparison fair because we are adjusting for the fact that the rings have 
an increasing number of atoms. The following chart may be helpful is seeing why this difference 
procedure works: 
 
Incorrect comparison: 

Cyclopentane    ⇔ Cyclohexane    ⇔ Cycloheptane 
C5H10   C6H12   C7H14 

Total 
Change:    CH2   CH2CH2 
 
Better comparison: 
(Cyclopentane - pentane)   ⇔ (Cyclohexane - hexane)   ⇔ (Cycloheptane - heptane) 
  C5H10  C5H12    C6H12  C6H14    C7H14  C7H16 
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Using differences with reference structures helps to cancel out the effects of having different 
numbers of atoms and bonds. In fact, the differences with the references (last row of Table 2) are 
each 0.47 kcal/mol larger than the corresponding MM2 sigma strain energy. So the trend in strain 
energy is exactly reproduced. The 0.47 kcal/mol results from the way in which MM2 tabulates 
the expected values of bond energy for “strainless structures.” 
   In summary, comparisons of steric energies can be made using differences with reference 
structures. The reference structures should be built so that the energy term of interest is 
highlighted. In this example, the reference was constructed from the linear form of the cyclic 
molecule to highlight the strain energy. The reference structures should be as similar as possible 
in every other way to the compound under study. 
 
Example 4: Different number of atoms, but ask a different question: 
 
Steric energies, as we have seen, usually can’t be compared directly when trying to predict 
chemical reactivity. We need enthalpies of formation for reactivity comparisons. However, we 
can ask a different question, for which steric energies are useful for comparisons. We can ask 
which terms in the force field have a big influence on the steric energy of the molecule and how 
that influence changes from molecule to molecule. In other words, by comparing relative 
contributions, we can trace through the important differences among our molecules. The relative 
contributions of the different force field terms to the steric energy, based on Table 2, are given in 
Table 3. 
 
Table 3. Relative contributions to the total steric energy of cyclic hydrocarbons. 
 
       % Cyclopentane Cyclohexane Cycloheptane 
Bond Stretch 2.9 5.2 2.9 
Bending 19.2 5.6 19.8 
Stretch-bend 0.9 1.3 1.7 
Lennard-Jones 23.2 55.1 37.5 
Dihedral 55.5 32.9 38.1 
 
   The primary contributor to the steric energy for cyclopentane is the dihedral (torsional) 
interaction. But for cycloheptane the steric energy results more from a combination of dihedral 
and unfavorable Lennard-Jones (Van der Waals) contacts. For cyclohexane, angle bending is 
relatively unimportant, compared to the other ring systems. Comparisons such as these are 
invaluable for building your intuition about the energy components of molecules. These 
comparisons are fair because the contributions are all relative to the steric energy of the same 
molecule. That is, the percentages are calculated from the energies of one molecule. 
   However, it is important to remember what such relative contributions don’t tell you. The 
results in Table 3, by themselves don’t tell you which molecule has the highest strain, nor even 
the highest steric energy. These relative contributions also don’t tell you which molecule has the 
highest enthalpy of formation. So you can’t predict which molecule will be the most reactive. 
   Another analogy may be helpful. Jane gets a higher percentage of her points from foul shots 
than Susan. This statistic, however, doesn’t tell you who gets more points per game. On the other 
hand, the statistic suggests that Susan should work on her foul shots, which is helpful 
information. 
   Comparing relative contributions is most useful when the various force field terms have 
comparable reference energies. For example, the various terms in Table 2 from MM2 are all very 
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small for linear hydrocarbons where the strain energies are quite small. However, some 
implementations of force fields shift the energy zero for the torsional interaction so that even for 
linear hydrocarbons the torsional terms are quite large. This does not mean that linear 
hydrocarbons are torsionally strained! So when getting used to a new program and new force 
field start by minimizing trans-butane and looking at the size of the different force field terms. If 
the force field terms are all small for butane then comparisons of the type in this example will be 
easy to interpret. If one or more terms for butane are much larger than the others you will need to 
remember that the relative size of that interaction in your molecule will be over-emphasized 
when looking at relative contributions. Making comparisons in the changes in relative 
contributions from one molecule to another will still be useful, however. 
 
Conclusion 
The discussions in the examples above are summarized in Table 4. Comparing steric energies 
directly gives the most information, but you can only compare steric energies directly if the 
molecules have the same formula and the same number and types of bonds. We even need to 
consider that not all C-C single bonds are equal, when we compare steric energies. In other words 
the chemical environments of all the bonds must be equivalent. You can always compare 
enthalpies of formation. 
 
Table 4. Molecular mechanics steric energy comparisons between molecules. 
 
Comparison Steric Energy Directly Difference with 

Reference 
Relative 
contributions 

Conformational Isomers yes yes yes 
Geometric Isomers if same environments yes yes 
Different Formulas never yes yes 
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Introduction Section 4 
Energy Minimization  

 
   The steric energy of a molecule is the sum of the bonded and nonbonded terms (Van der Waals 
energy, and the electrostatic energy). The lowest energy conformation is the set of bond lengths 
and angles that gives the smallest steric energy. In other words, bonds find a compromise among 
competing forces to determine the lowest energy conformation. The goal of molecular mechanics 
is to determine the lowest energy conformation of a molecule. The process is called energy 
minimization. The computer makes small changes in the position of every atom and calculates 
the energy after every move. The move is kept if the energy is lowered, otherwise the atom is 
returned to its original position. This process is repeated many times until an overall energy 
minimum is reached. One full cycle, where each atom is moved once, is called a minimization 
step or iteration. Hundreds of steps may be necessary to find a reasonable structure for the 
molecule. 

       a.       c. 

       b.       d. 

Figure 1. Finding the change in bond length to minimize the potential energy. (a.) The 
potential energy curve for a stretching bond. (b.) The slope of the potential energy is linear 
and changes sign as the molecule passes through the equilibrium bond length. (c.) The 
starting geometry is with bond length r1. Now calculate the change in bond length that 
minimizes the potential energy. (d.) The slope of the potential energy at r1 is k(r1-r0), and the 
slope of the line in the dE/dr graph is k. To calculate the change in bond length to find the 
minimum potential, extrapolate down the line to the zero point. 
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   Many methods have been developed to accelerate the minimization process. These methods use 
information from the derivatives of the potential energy function to calculate the change in the 
coordinates for each step1. The Newton-Raphson method is the most basic of these techniques, 
and we discuss this method first using a simple example. We start with a diatomic molecule. The 
only coordinate to minimize is the bond length, r. The potential energy function is just the bond 
stretching term, Figure 1a: 

 Estr = 
1
2 k ( r – ro)

2       (1) 

where k is the force constant for the bond and ro is the equilibrium bond length. The derivative of 
Estr is the slope of the curve in Figure 1a: 

dEstr

dr  = k ( r – ro)       (2) 

The derivative is plotted in Figure 1b. Equation 2 shows that the slope of the potential energy is 
linear and changes sign as the molecule passes through the equilibrium bond length. For 
example, in Figure 1a, when r>ro the slope is positive, when r<ro the slope is negative, and the 
slope is zero at ro. The slope of the line in Figure 1b is the second derivative of the potential 
energy: 

 
d2Estr

dr2  = k        (3) 

   Lets say that the starting guess for the bond length before minimization is r1, Figure 1c. Now 
we wish to calculate the change in bond length that minimizes the potential energy. In other 
words, we wish to calculate the distance we need to move to find ro, or ro-r1. The change in bond 
length is easiest to calculate using the derivative of the potential, Figure 1d, because the 
derivative is a linear function. All we need do is extrapolate down the line to the zero point. In 
reference to Figure 1d, the derivative of the potential at r1 is: 

 
dEstr

dr  = k ( r1 – ro) at r1      (4) 

Solving this linear equation for the change in bond length just requires dividing by –k: 

 ( ro – r1) = - 
1
k 

dEstr

dr        (5) 

This change in bond length is also shown in Figure 1d. For harmonic potentials, like Equation 1, 
the calculated change is exact, so only one iteration step is needed. When there are many force 
field terms or non-harmonic potentials (eg. torsions, Van der Waals, Coulomb) the derivative of 
the potential is not linear, and equation 5 is just an approximation. Therefore, in the general case 
many steps are necessary to find the minimum, but the derivative of the potential still gives a 
good guess. 
Newton-Raphson:  Equation 5 is specific to a harmonic potential. We can obtain a more general 
solution by substituting for k using Equation 3: 

 ( ro – r1) = - 
1

 
d2Estr

dr2
 
dEstr

dr        (6) 

Equation 6 is the basis of the Newton-Raphson method1. The first derivative of the potential is 
called the gradient. The second derivative is called the Hessian, especially when more than one 
dimension is involved. The Newton-Raphson method is also used for molecular orbital 
calculations. You will see the Hessian mentioned in Spartan and other molecular orbital software 
packages. When many atoms are present, the Hessian can be time consuming to calculate and to 
invert. The many different methods for minimization differ in the way they approximate the 
Hessian. The Newton-Raphson method requires the fewest steps, but each step is time 
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consuming. The number of steps required to minimize strychnine, Figure 2, for several methods 
is given in Table 1. The Newton-Raphson method was almost the fastest in this case because 
strychnine is a very small molecule, for larger molecules Newton-Raphson is very slow. 
 

Table 1. Iterations necessary to minimize strychnine from a 
crude starting geometry. 
Method Seconds Steps 
Steepest Decents 32.4 3042 
Conjugate Gradient 14.1 237 
Newton-Raphson 13.0 15 
Adopted Basis Newton-Raphson 3.7 279 

 
 
Steepest Descents:  In the steepest descents method, the Hessian is just approximated as a 
constant, γ: 

( ro – r1) = - 
1
γ 

dEstr

dr        (7) 

 

You can think of γ as an effective force constant as in Equation 5. γ is calculated at the beginning 
of the first step to give a specified step size. The dialog for the minimization parameters for 
CHARMm and MOE are shown in Figure 3. The Initial Step Size entry is used to fix γ. 
 
 
CHARMm 
Number of Minimization Steps 50 
Coordinate Update Frequency 5 
Energy Gradient Tolerance  0.0001 
Energy Value Tolerance  0 
Initial Step Size   0.02 
Step Value Tolerance   0 

MOE 
  Iteration Limit  RMS Gradient 
     Test 
Steepest Descents 100  1000 
Conjugate Gradient 100  100 
Truncated Newton 200  0.001 
 

Figure 3. CHARMm and MOE parameters for energy minimization. 
 
 
Too small a step size can slow the minimization process. Too large a step size can prevent 
convergence. Table 2 lists the effect of the step size on the number of steps to give a minimized 
structure. After the first steepest descents stage, the next steepest descents stage is taken in a 
direction perpendicular to the previous direction. This change in direction is efficient in 
optimizing all the variables for the minimization. 
 

Table 2. Steps necessary to minimize strychnine for different step sizes. 
 Step Size 
Method 0.01 0.02 0.04 
Steepest Descents 3998 3042 no converge 
Conjugate Gradient 237 237 237 
Newton-Raphson 15 15 15 
Adopted Basis Newton-Raphson, ABNR 311 279 331 

 

N

NH

H
H

OO  
Figure 2. Strychnine 
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   The conjugate gradient and Newton-Raphson methods only use the step size in determining the 
initial gradient, so they are not strongly effected by the choice of the step size. 
   Table 1 shows that steepest descents has very poor convergence properties. So why is steepest 
descents used at all? Conjugate gradients can often fail with a poor initial structure, such as a 
Protein Database file for a protein. Steepest descents is less sensitive to the starting conditions. 
Therefore, a few steps of steepest descents is usually used to refine a poor starting structure 
before switching to a better method, such as conjugate gradient. 
 
Conjugate Gradient:  Conjugate gradient is a variation of 
the steepest descents method. The calculation of the 
gradient is improved by using information from previous 
steps. After the first steepest descents initial stage, a 
second steepest descents stage is taken in a direction that 
is predicted to be optimal for minimizing the remaining 
variables. This direction is called the conjugate direction. 
Pure steepest descents algorithms always take 90° turns 
after each stage, which may move the first minimization 
stage away from the optimal value. The conjugate 
direction leaves the previous minimization at the optimum 
value while finding an efficient direction to optimize the 
remaining variables. For example, for the minimization of 
the structure of water the OH bond length and bond angle 
must be adjusted to minimize the energy. A schematic 
representation of the potential energy surface for the two 
variables is shown in Figure 4. Lets say that the initial 
steepest descents finds the minimum along the initial direction. The next best direction to look 
for the overall minimum is not necessarily perpendicular to the initial path, Figure 4. 
   Table 1 shows that the conjugate gradients method is vastly better than steepest descents while 
remaining nearly as fast per step. Conjugate gradients is a good general purpose technique. 
 
Adopted Basis Newton-Raphson, ABNR:  For very large systems like proteins and nucleic acids, 
energy minimization can require hours. The search for very efficient minimization methods for 
such large biological macromolecules has led to a modified version of the Newton-Raphson 
method that maintains excellent convergence properties but in a much shorter time. Each step of 
the ABNR method begins with a steepest descents stage. Then the bond lengths and angles that 
change the most are noted, and only these coordinates are used in a second stage of Newton-
Raphson minimization. For strychnine, Table 1, and for biological macromolecules in general, 
ABNR is clearly the best method. 
 
Truncated Newton-Raphson:  The use of second derivatives in Newton-Raphson minimization is 
responsible for the excellent convergence properties. However, the inversion of the Hessian is 
time consuming. An approach has been developed that uses conjugate gradients to determine the 
directions for the minimization and then the Hessian to determine the minimum in that 
direction2. The “direction” of the minimization determines the particular bond lengths and angles 
that will be changed. The minimum in that “direction” determines how much to change those 
bond lengths and angles. Truncated Newton-Raphson has similar and often better convergence 
characteristics to ABNR without a significant difference in time. The Hessian is calculated 

r

θ

initial direction

conjugate
direction

E

 
Figure 4.  One iteration of conjugate 
gradients minimization. 
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directly from the second derivatives, which are evaluated numerically, but some small second 
derivatives between distant atoms are neglected (or truncated)3. 
   The general approach to energy minimization is to use a “cascade” of techniques. First 50-200 
steps of steepest descents is used to remove close contacts (atoms closer than the sum of their 
Van der Waals radii). Then 50-200 steps of conjugate gradients is applied, followed by final 
minimization using ABNR or truncated Newton-Raphson. For small molecules only 10-20 initial 
steepest descent steps are needed, and the intermediate conjugate gradient steps can be skipped. 
 
Minimization Criteria:  How do you determine when the molecule is minimized? Molecular 
modeling programs provide a number of alternate methods for deciding when to stop, Figure 3. 
The Number of Minimization Steps (Iteration Limit) can be used to stop the calculation. This 
option is dangerous; you need to realize that if the minimization stops for this reason that the 
molecule is not minimized and you need to continue to submit the molecule for minimization 
until the energy no longer changes on successive steps. A better option is to set the number of 
minimizations steps to a very large number and then use an energy based criterion, like the 
energy gradient tolerance (test). 
   Remember that the gradient is the derivative of the energy. The energy gradient approaches 
zero at the energy minimum. The criterion then is to stop if the gradient is less than a selected 
value. This method is illustrated in Figure 5. In program 
listings you will often see the term rms gradient. Rms 
stands for root mean squared. For some coordinates 
(e.g. a bond stretch) the gradient might be positive, 
while for other coordinates (e.g. an angle) the gradient 
might be negative. So that the positive and negative 
gradients don’t cancel out, the gradients are squared to 
give positive numbers before adding them together to 
make the comparison. (The standard deviation is 
likewise an rms statistic). 
   An alternate method to stop the minimization is to 
compare the change in energy between the current step 
and the previous step, ∆E in Figure 6. If the change in 
energy is below the set tolerance, then the minimization 
is halted.  
   Finally, the last available criterion is the step size. 
The size of the change in the coordinates is monitored 
and when this change is smaller than the set tolerance, 
the minimization is halted. This criterion, where ∆r is 
the step size, is also illustrated in Figure 6. The step 
size criterion is useful for shallow potentials, where 
the energy doesn’t change much for large changes in 
conformation or distances between molecules. For 
example for complexes, the energy gradient can be 
small and still give large changes in the distance 
between the two molecules. In some programs, the 
step size is called the rms displacement. 
   When several criteria are specified, the first criterion 
to be met stops the minimization. For example, as 
mentioned above if you set the number of minimization steps to a small number, the calculation 
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will probably stop before a minimum is achieved. To determine if the step count has stopped the 
calculation, look at the output and determine if the last minimization step is the same as the 
number of minimization steps that you specified as a control parameter (i.e. Figure 3). To avoid 
this problem, set the number of minimization steps to a large number. On the other hand, if you 
have a large molecule, there is a danger in specifying too large a number of minimization steps. 
The calculation my take too long to run and then the computer is tied up so that you can’t do 
other things. Or, you may have made a mistake, and a long minimization keeps you from quickly 
making changes. 
   In CHARMm, as a default, we normally choose 500 steps for small molecules and 50 steps for 
large molecules. Then we make sure to resubmit the minimization if the last step matches the 500 
or 50 that we set. Other than minimization steps, the criterion that you use is a matter of your 
choice. The very best approach is to enter a value for each and see which is statisfied first. 
Entering all this data is tedious, so as a default we usually use just the energy gradient tolerance. 
A value of 0.0001 is useful for very small molecules, however, you will find it necessary to use 
0.001 or 0.01 for biological macromolecules or for solvated systems to save time. The units are 
in kcal/mol/Å in most programs. 
 
 
 
 
References: 
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Introduction Section 5 
Molecular Dynamics 

 
Introduction  
   One of the most important developments in macromolecular chemistry is molecular dynamics. 
Molecular dynamics is the study of the motions of molecules. The time dependence of the 
motion of a molecule is called its trajectory. The trajectory is determined by integrating Newton's 
equations of motion for the bond stretching, angle bending, and dihedral torsions of the 
molecule. Molecules are always in motion. The motion of molecules is important in essentially 
all chemical interactions and are of particular interest in biochemistry. For example, the binding 
of substrates to enzymes, the binding of antigens to antibodies, the binding of regulatory proteins 
to DNA, and the mechanisms of enzyme catalysis are enhanced and sometimes completely 
determined by the conformational flexibility of the molecules. Different domains of an enzyme 
can have very different motional freedom. The problem of protein folding is the determination of 
the trajectory of the macromolecule as it assumes its active conformation after or during protein 
synthesis. 
   Most chemistry is done in solution. Molecular dynamics has proved to be an invaluable tool in 
studies of solvation energetics. Solute-solvent interactions are governed by the relative motions 
of the solute and solvent molecules and the motional-response of the solute to the presence of the 
solvent. Some of the earliest dynamics studies were to determine solvation Gibb's Free energies. 
In biochemistry, solute-solvent interactions play a particularly important role in determining the 
secondary and tertiary structure of biomolecules. 
   Another important use of dynamics is in the search for the global energy minimum in 
conformationally flexible molecules. Molecular mechanics find the energy minimum that is 
closet to the starting conformation of the molecule. This "local" energy minimum is rarely the 
lowest energy, or "global", minimum for the molecule. Finding the "global" minimum can be a 
very difficult task. In molecular mechanics a common procedure is to start with many different 
initial conformations and minimize them all looking for the lowest energy result. This kind of 
search can be very time consuming. Molecular dynamics, on the other hand, can help a molecule 
"explore" its conformation space more efficiently. The trajectory of the molecule is run at a high 
temperature, so that the atoms will move very far from their equilibrium positions. Such high 
temperature trajectories can overcome energy barriers that lead to more stable conformations. 
The trajectory often starts in one conformation and then ends up in another more stabile 
conformation. 
   Molecular dynamics is an active area of research in biochemistry, molecular biology, and 
polymer chemistry. Current work is directed towards making molecular dynamics a reliable tool 
for the estimation of Gibb's free energies of solvation, conformational equilibria, and equilibrium 
constants for binding interactions. These thermodynamic parameters are determined by doing 
free energy perturbation studies using molecular dynamics trajectories; see Section 7 for more on 
free energy perturbation. 
   The difference between molecular mechanics and dynamics can be illustrated with a simple 
example. Lets direct our attention to a single bond in a molecule, a C-H bond for example. 
Assume that we start with the bond length too large, say 2 Å. If we were to run molecular 
mechanics, the bond length would decrease until the minimum in the potential energy was 
reached, Figure 10.1a. Further minimization would not change the bond length. If we were to run 
molecular dynamics on our stretched bond, the trajectory would decrease the bond length, but the 
bond length would continue decreasing past the equilibrium length until it was too short. Being 
too short, the bond length would then begin to increase. Over time the bond length will oscillate 
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about its equilibrium value, never coming to rest, Figure 10.1b. In other words, in mechanics the 
potential energy is minimized, while the kinetic energy of the molecule is ignored. In a dynamics 
trajectory, both potential and kinetic energy are studied and the total energy is conserved by the 
motion. 
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 a.      b. 
 

Figure 10.1. The potential energy function for a bond. The initial bond length at 2 angstroms is 
too long. (a) Molecular mechanics finds the lowest energy state of the molecule. b. Molecular 
dynamics find the time dependent motion of the molecule. The vibration continues forever. 
 
   As chemists we often have too static a picture of molecules. Our mental images of molecular 
structure are derived from the printed page. Rather, molecules are always in motion. The results 
of molecular dynamics are very instructive, because dynamics trajectories show us how 
important motion is in chemical interactions. We should remember that chemical reactions, by 
their very nature, involve the motion of atoms as bonds are broken and made.  
 
 

Dynamics Trajectories: Integrating Newton's Laws 
   Integrating Newton's Laws of motion is actually very straightforward. First, we use the 
molecular mechanics force field as the potential energy for our molecule. Therefore, the potential 
energy of our molecule involves bond stretching, angle bending, dihedral torsions, Van der 
Waals interactions, and electrostatic interactions. We then solve for the motion of each atom in 
the molecule as a function of time using this potential energy. However, as we begin to learn 
about dynamics, lets simplify our system to make things less complicated. Lets start with a 
diatomic molecule. The results of our work on a diatomic molecule will involve everything we 
need to know about more complicated systems. The molecular mechanics potential energy of a 
diatomic system has only one term, the potential energy for bond stretching: 
 

  V= 
1
2  k (r-ro)2       1 

 

where r is the current bond length, ro is the equilibrium bond length, and k is the force constant 
for the bond. We can simplify Eq. 1 even further if we let x = r - ro, then 
 

  V= 
1
2  k x2        2 

 

The force that acts on the system is the derivative of the potential: 
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  F = - 
dV
dx        3 

 

Taking the derivative of Eq. 2 gives: 
 

  F = - k x       4 
 

which is just the familiar Hooke's Law for a mass on a spring. Here the bond is the spring. 
Newton's Law tells us that F= m a, where a is the acceleration. The acceleration is the rate of 
change of the velocity: 
 

  F = - k x = m 
dv
dt       5 

 

The position of the system, x, is determined by integrating the equation: 
 

  
dx
dt   =  v       6 

 

Integrating Eq. 5 gives the velocity as a function of time, starting from an initial velocity of v1: 
 

  ⌡⌠

v1

v2

 dv  = 
⌡

⌠

t1

t2

 
F
m  dt       7 

 

giving  v2 = v1 + 
F
m  ( t2 -t1 )       8 

 

assuming a constant force over the time interval and where m is the reduced mass for the 
vibrating bond. Integrating Eq. 6 gives the position as a function of time, starting from an initial 
position of x1: 
 

  ⌡⌠

x1

x2

 dx  = ⌡⌠
t1

t2
 v2 dt       9 

 

 giving  x2 = x1  +  v2 ( t2 - t1 )     10 
 

assuming a constant velocity over the time interval. Since the force, velocity, and position are all 
changing with time, Eqs 8 and 10 are solved repeatedly over short time steps, first updating the 
velocity and then updating the position. The value of x for each of these successive time intervals 
is then the trajectory of the system. In dynamics simulations the time step is very short, usually  
dt = t2 - t1 = 1x10-15 sec or 1 femtosec. 
   All that remains is to determine the initial conditions. A common choice for the position is to 
choose x1 = 0 at t1 = 0. But what about the velocity? The average velocity of a system is related 
to the temperature; the higher the temperature the larger amplitude the motions. At x = 0 all of 
the energy of an oscillating molecule is in kinetic energy. The kinetic energy is given as 
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  KE = 
1
2   m v2       11 

 

The Equipartition Principle of thermodynamics gives an estimate of the kinetic energy in a bond 
vibration as 1/2 RT, where R is the gas constant; R= 8.314 J mol-1 K-1. Setting KE = 1/2 RT and 
solving for the velocity gives: 
 

  v  =   RT / m       12 
 

We therefore set v1=   RT / m  at t1 = 0. 
   Eqs 8 and 10 are all that is meant by "integrating" Newton's Laws of motion. However, our 
example is a "one dimensional" system: there is only one motional variable. In more complicated 
molecules, equations 8 and 10 would be solved for the x, y , and z motion of each atom. 
However, no new theory is needed; the problem just becomes more tedious. Computers are very 
good at solving simple, repetitive problems. In fact the advancement of molecular dynamics is 
very closely tied to the advancement of computer technology. The availability of fast computers 
means that molecular dynamics can now become one of the standard tools in computational 
chemistry. 
 
Periodic Boundry Conditions 
 

   Molecular dynamics is commonly used to calculate properties in solution. The molecule to be 
studied is surrounded by solvent molecules, Figure 10.2. 

 
Figure 10.2 Molecular dynamics using explicit water molecules. 1,1,1-trichloroethane is shown 
in the light shading. 
 
 

Such explicit solvation treatments are especially useful when hydrogen bonding between the 
solute and the solvent is expected to play an important role. All the extra solvent atoms, however, 
greatly increase the time to do the molecular dynamics run. There is a real tradeoff between 
accuracy and computation time. As a consequence, the number of added water molecules is kept 
to a practical minimum, usually in the hundreds for small molecule simulations. 
   With small numbers of solvent molecules, the surface to volume ratio of the system is large, so 
that surface effects dominate. Surface effects include the imbalance of forces between the bulk of 
the solvent and the vacuum surrounding the solution droplet. This imbalance produces surface 
tension. The surface tension is great if you are studying aerosols, however we usually are trying 
to model homogeneous solutions where surface tension plays no role. Another surface effect is 
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evaporation. Just like real solutions, water molecules can escape into the surrounding vacuum 
and in essence evaporate. The best way to avoid surface effects is to use periodic boundary 
conditions. 
   Using periodic boundary conditions, we don't have to worry about what happens at the sides of 
the box of waters. Exact images of the box are stacked next to each other in all directions so that 
there are no surfaces to the solution, Figure 10.3. Periodic boundary conditions eliminate any 
surface tension effects. 
 
 
 
 
 
 
 
 
 
(a)     (b) 
Figure 10.3 (a) Periodic boundary conditions effectively create copies of the system in all 
directions to avoid surface effects. (b) If a molecule leaves the box the net effect is that a copy of 
the same molecule enters the box from the opposite side. In this way the molecule never really 
can leave the box, i.e. evaporate. 
 
   The way boundary conditions are done in the computer algorithm is to first check if the 
coordinates of a molecule lie inside the box. If not, the molecule is translated so that it enters the 
opposite side of the box. For example for a cubic box with side length a, if the x coordinate of a 
molecule is found to be outside of the box, x>a, then the coordinate is replaced by x = x-a. 
 
SHAKE, Rattle and Roll 
 

   One of the main difficulties in molecular dynamics calculations is accurately modeling systems 
that have motions on very different times scales. To accurately model high frequency vibrations 
like C-H stretches, very short times intervals on the femtosecond time scale are necessary. 
Therefore, setting dt = 1x10-15 s in Eqs. 8 and 10 is required. However, the interesting motions in 
proteins, such as hinge motions of the backbone, take place on the microsecond time scale. To 
model a one microsecond motion with the time interval for the dynamics trajectory set at one 
femtosecond requires 1x10-6/1x10-15 = 1x109 or one billion time steps. Computer are getting 
faster, but run times of months still would be required for large proteins with large numbers of 
explicit waters of solvation. To get around this problem, it is possible to ignore the very fast 
vibrations, such as C-H stretches, by applying constraints to these bonds. In so doing, the time 
interval for the dynamics can be lengthened several fold. This approach is called the SHAKE 
method in CHARMm. For example, in a methyl group the C-H bonds can no longer stretch 
(SHAKE) but the C-H bond angles can still bend (rattle), and the torsion angles can still change 
(roll). 
   Applying constraints to high frequency vibrations has been found to be very effective in 
conformational studies. However, free energy perturbation studies have determined that the 
SHAKE method does not work when accurate thermodynamic values are required (see Section 7 
for more on free energy perturbation studies). Because of this problem, biochemists are some of 
the most voracious users of supercomputer time. Another approach to solvation called continuum 
solvation electrostatics is a more approximate but much faster method (see Section 8). 

a 
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Problem 5.1: Dynamics trajectories 
 
   Write a short EXCEL spreadsheet or BASIC program to determine the trajectory for a diatomic 
molecule. To make the problem more realistic, assume the bond is anharmonic, with potential 
energy function: 
 

  V = 
1
2  k x2 – 

1
2  k χ x3       13 

 

Please see the Section 1 for more information on anharmonic potentials for bond stretching. With 
your dynamics trajectory you will be able to see the time dependence of the vibration. You will 
also be able to determine the conditions for breaking a bond. For example, you can increase the 
anharmonicity to determine how anharmonic the bond must be to be broken at room temperature. 
Conversely, you can keep the anharmonicity constant and increase the temperature until the bond 
breaks, which is just what synthetic chemists do when they heat a reaction mixture. 
Differentiation of Eq. 13 gives: 
 

  F = - k x  +  
3
2   k χ x2      14 

 

Display the results graphically as two asterisks separated by the distance x. To make the graphics 
a little easier, you can use the program fragments below. Start with: 
 

 R=8.314 
 T=298.2 
 k=200 
 m=10 
 χ=0.05 
 dt=0.1 
 x=0 
 

With these constants, increasing χ to 0.1075 will cause the molecule to dissociate at 298.2K. 
Solve Eq. 12 for the initial velocity, v. Because of the way that computer languages handle the 
"=" sign, you can drop the subscripts on v and x, for example write: 
 

   v=v+F/m dt        15 
and    x=x+v dt.       16 
 

After you get your spreadsheet or program to work, change the force constant k, the 
anharmonicity, and the temperature to note the effect. 
 
 
The Spreadsheet Version:  Set up columns using the integrated Newton's equations 15 and 16 to 
calculate x. Then to do the graphics, set up a column with values = x+10. The 10 is an arbitrary 
offset to make the graphics look good. In the next column, put in statements similar to 
 

=REPT(" ",15-D17/2)&"*"&REPT(" ",D17)&"*" 
 

but, instead of "D17" use the cell address of the adjacent column with the x+10 values. The result 
should look something like: 
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v x F x+10 plot 
15.74559 0 0 10           *          * 
12.96835 1.574559 -277.72 11.5746          *           * 
8.462302 2.871394 -450.61 12.8714         *            * 
3.100163 3.717624 -536.21 13.7176         *             * 
-2.52184 4.02764 -562.2 14.0276        *              * 
-7.93464 3.775457 -541.28 13.7755         *             * 
-12.5648 2.981993 -463.01 12.982         *            * 
-15.5692 1.725515 -300.44 11.7255          *           * 
-15.9021 0.168595 -33.293 10.1686          *          * 
-12.7557 -1.42162 314.639 8.57838           *        * 
-6.27013 -2.69719 648.561 7.30281            *       * 
2.03583 -3.32421 830.596 6.67579            *      * 

9.737817 -3.12062 770.199 6.87938            *      * 
14.72284 -2.14684 498.502 7.85316            *       * 

16.1402 -0.67456 141.737 9.32544           *         * 

 
 
The BASIC program :  The program listed below will then take care of the plotting. Just slip in 
your constants and initial conditions before the loop. Then put the integrated Newton's equations 
15 and 16 inside the loop. The IF statement is put in to signal the dissociation of the bond. When 
the molecule dissociates the program will print out "rrrip." With these constants, increasing χ to 
0.1075 will cause the molecule to dissociate at 298.2K. 
 
 
REM program to solve Hooke's Law dynamics 
. 
. 
put constants and initial conditions in here 
. 
. 
FOR i=1 TO 100 
. 
. 
put Eq. 14, 15, and 16 in here 
. 
. 
p=x+6 
IF p>50 THEN LOCATE 1,1:PRINT"<<rrrip>>":GOTO qt 
LOCATE 1,1 
PRINT SPC(15-p);"*";SPC(INT(p+.5)+p);"*" 
LOCATE 1,1 
PRINT SPC(15-p);"  ";SPC(INT(p+.5)+p);"  "; 
NEXT i 
: 
qt:  
LOCATE 2,1 
INPUT"type return to finish";a$ 
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Introduction Section 6 
Distance Geometry and 2D to 3D Model Conversion 

 
   Distance geometry is a general technique for generating 3D-models for chemical substances. 
Distance geometry is used in consort with energy minimization techniques to find low energy 
conformations for small molecules and large biomolecules.  
   Biomolecules:  It is very difficult to find the global energy minimum for complex molecules. 
Proteins, for example, have many tens of thousands of local minima. Determining the lowest of 
the local minima can be a daunting task. Consider for example the φ and ψ angles along the 
protein backbone. For both angles there are roughly three low energy conformations, two gauche 
and one trans. Therefore each amino acid has roughly 3x3=9 possible conformations. If a protein 
has 20 amino acids the total possible backbone conformations is 920 = 1.2x1019 conformations. 
However, 20 amino acids is a very small protein. The addition of side chain torsion angles 
greatly compounds the calculations. This problem is summarized by stating that proteins and 
nucleic acids have a very rough energy landscape. The valleys are the local minima and we need 
to visit each valley to find the lowest energy structure. We need help. Experimental information 
must be used to simplify the search for the tertiary structure of proteins and nucleic acids. 
Distance geometry is the mathematical technique that allows the construction of three-
dimensional structures subject to the constraints provided by experimental information.1-3 NMR 
is a particularly rich source of experimental constraints. The Protein Data Bank, PDB, has 22,000 
protein structures, 15% of which were determined by NMR.4,5  
   The NMR solution structure for a model of the nicotinic acetylcholine receptor complexed with 
a potent natural antagonist is shown in Figure 1a. The larger structure is the antagonist, -
bungarotoxin, and the smaller is a portion of the antagonist binding site of the α-subunit of the 
nicotinic receptor showing amino acids 185 – 190. The distance geometry calculation used 325 
distance constraints and 64 dihedral angle constraints.6 Even so, the conformation of the peptides 
is still not completely specified. As a result, distance geometry was repeated producing a set of 
possible structures, Figure 1b. The NMR based structures in the Protein Data Bank are routinely 
sets of closely related structures that all satisfy the available experimental constraints. The ability 
of distance geometry to generate multiple structures is an important advantage for conformational 
searches in large and small molecules. 
 

  
 (a)     (b) 
Figure 1. (a). -bungarotoxin (ribbon), and the antagonist binding site model of the α-subunit of 
the nicotinic acetylcholine receptor (stick); PDB entry 1ABT. (b) Four alternate structures for the 
complex derived by distance geometry, superimposed(backbone traces, with alternate solutions 
for bungarotoxin in different shades of gray and black and the protein receptor models in white). 
   2D to 3D Model conversion:  Another closely related problem is the construction of the initial 
coordinates for molecular mechanics or molecular orbital calculations. The input for such 
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programs typically starts with the output of 2D “sketchers” or just connection tables. Molecular 
mechanics is a wonderful technique for predicting accurate 3D structures, however molecular 
mechanics programs routinely fail if the input structure is grossly distorted. Therefore, to get an 
accurate molecular mechanics calculation, you need to start with a structure that is not too far 
from a reasonable conformation. Molecular orbital programs also require that the input have a 
structure that is somewhat close to the geometry that you are seeking. Otherwise, the wrong 
atoms may end up being bonded to each other in the final structure. Therefore, it is very common 
to use molecular mechanics to produce the input file for molecular orbital calculations. When 
you use Spartan, the default is to build the input structure using the Merck Molecular Force Field 
when you minimize the structure in the Builder.7 Most molecular orbital programs also use 
molecular mechanics to produce an initial guess for the Hessian. So even for molecular orbital 
calculations we have the same problem; we need a reasonable input structure even if the user 
isn’t very adept at drawing the desired molecule on the screen. 
   The list of atom connections for a molecule is called the connection table. All molecular 
mechanics programs require a connection table for the input for each molecule, in addition to 
approximate atom positions. 2D-sketchers in their simplest form produce the connection table 
and 2D coordinates as drawn by the user. The third, z dimension needs to be added before a 
molecular mechanics calculation can proceed. The two common ways of building the 
approximate 3D-structure are functional group templates and distance geometry. 
   Functional group templates are simply the bond distances and angles specific to a given 
functional group taken from standard tables. For example, the bond angles around sp2 hybridized 
carbons in alkenes and ketones are about 120°. The typical C=O bond length is 1.22Å. In other 
words, the ideal bond lengths and angles from standard force fields are used to guess the 3D-
structure. The torsion angles present a problem since several torsion angles are possible, e.g. two 
gauche and trans angles for sp3 systems. Most builders start with all trans structures unless the 
trans structure produces a close contact, at which point the gauche conformations are used. From 
the user’s perspective there are two types of sketchers. The sketchers or builders in Spartan and 
MOE, for example, require the use of pre-built fragments to assemble the molecule.8 These pre-
built fragments already have the appropriate bond lengths and angles for the chosen functional 
group. As the molecule is built, the result is automatically constructed in 3D. The second 
approach for sketchers is to draw the molecule free-hand in 2D. Sketchers in chemical drawing 
programs and the Java Molecular Editor (JME)9 are examples of this style. Free-hand sketchers 
present a real challenge since users can input structures that are wildly distorted. The coordinates 
presented by the user must be carefully adjusted to approximate real molecules. Rings systems 
present a particular problem with free-hand sketchers and require somewhat complex algorithms 
to set up using the template approach. Some sketchers maintain a database of the torsion angles 
for a wide variety of ring systems. Other sketchers use very approximate force fields and 
simplified minimization algorithms to guess the torsion angles around rings. Distance geometry 
is often an easier approach for ring systems. The Concord10 and Corina programs are template 
based builders and provide amazingly accurate structures, even when compared to X-ray crystal 
structures.11-13 
   2D-sketchers work well for hands-on operation. However, completely automated procedures 
are also necessary. The rapid acceleration of the drug discovery process through combinatorial 
chemistry and high throughput screening has added an additional dimension to the 2D-3D 
conversion problem. Drug companies currently maintain storerooms filled with hundreds of 
thousands of compounds and develop combinatorial libraries (groups of compounds) of hundreds 
of thousands more. It is often necessary to store and retrieve information on all these compounds 
from exceedingly large computer databases. The efficient computer generation of 3D-models for 
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all these compounds is a daunting task. Often the structural information for these compounds is 
stored only as a connection table, so even 2D-information is not available. The connection table 
just specifies which atom is connected to which and the corresponding bond order. For example 
the connection table for ethylene, H2C=CH2, in the common format used by “.mol” files is given 
in Figure 2. 
 
 

C1 C2

H6

H5H3

H4  

Atom 1 Atom 2 Bond order 
   1  2  2 
   1  3  1 
   1  4  1 
   2  5  1 
   2  6  1 

Figure 2. Connection Table for Ethylene. The atom numbering is arbitrary. 
 
 
The lack of any coordinates makes conversion of connection tables to molecular mechanics input 
files even harder. Corina, Concord, and distance geometry are designed to work from connection 
tables. One popular form of connection table is the “Smiles” string. Smiles strings are very 
efficient for storing large amounts of structural information.14,15 The Smiles string for ethylene is 
just C=C. Some example Smiles strings are given in table I. Single bonds are assumed unless 
otherwise indicated. Hydrogens are omitted. Branching is shown by parentheses, i.e. tert-butanol 
is CC(C)(C)O. Ring closing connections are shown with numbers. Aromatic atoms are given in 
lower case. JME, drawing programs, and MOE can all be used to generate Smiles strings from 
sketches, so you don’t really need to know the rules for generating Smiles. 
 
 
Table I. Smiles strings for some molecules. 
 

Butane  CCCC         Ethanol  CCO  Acetaldehyde  CC=O 
2-methylpropane  CC(C)C        Acetone  C(=O)C  Acetic acid  CC(=O)O 
Cyclohexane  C1CCCCC1        benzene  c1ccccc1  Toluene c1cccccc1C 
Nitrobenzene  c1ccccc1[N+](=O)[O-]     Phenylalanine  NC(C(O)=O)Cc1ccccc1   
 
 
   In summary, efficient calculation methods are needed for the construction of the 3D-
coordinates of complicated molecules. Template based methods are very useful especially for 
small molecules. In many cases, however, some experimental information is known for a few 
distances or dihedral angles and the final structure must be built to include these structural 
parameters. Distance geometry can be applied to small and very large molecules and can easily 
incorporate experimental structural information in the form of distance constraints. 
 
 
Distance Constraints 
 
Distance constraints are ranges of allowable distances between pairs of atoms. An example is that 
you can specify that two atoms are to be within a normal hydrogen bond distance of each other, 
1.8-2.1 Å. NMR spectra are very useful for experimentally determining distance constraints using 
nuclear Overhauser effects, nOe’s. nOe based two-dimensional NMR spectra are called NOESY 
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spectra. Distance constraints from NOESY are particularly useful for studies of the tertiary 
structure of proteins. The combination of NOESY, distance geometry, and X-ray diffraction has 
spawned a new field in the molecular life sciences called Structural Biology. Using NOESY 
spectra it is possible to determine that pairs of atoms are within the range of about 3-4 Å of each 
other.3 Just a few nOe based distance constraints can greatly simplify the search for the low 
energy structures of biomolecules. 
   Distance constraints and distance geometry can also be very useful for small molecule work. 
Hydrogen bond constraints and through-space nOe distances can be also useful for determining 
the conformation of small molecules as well as proteins. Distance constraints can also be values 
that you make up to help guide the conformation of the final molecule. For example, you may 
want a conformation that puts two parts of a long molecule close to each other rather than the 
default all-trans structures that most 2D-3D conversion programs generate. 
 
Metric Matrix Distance Geometry 
 

The input data for distance geometry are the distances between all the atoms in the molecule. The 
goal of distance geometry is to find the atom positions, xi, yi, zi for each atom i. The metric 
matrix is used to calculate 3D atom coordinates using a process called embedding.1-3 A triatomic 
molecule, Figure 3, will be used an example as we discuss the steps in embedding. The atom 
coordinates are  
 

For atom 1: x1, y1, z1  For atom 2: x2, y2, z2  For atom 3:  x3, y3, z3  (1) 
 

 

 a.      b. 
Figure 3. A triatomic molecule with (a) the input atom-atom distances and (b) the coordinate 
system for building the metric matrix from distances. The molecule is in the x-y plane, so z = 0 
for all atoms. 
 
The metric matrix is constructed from the dot products of the coordinate vectors. For example the 
dot product for atoms 1 and 2 is (x1x2+y1y2+z1z2). The elements of metric matrix for atom pair i,j 
is then in general given by: 
 

 gij  = xixj+yiyj+zizj        (2) 
 

However, we don’t know the atom coordinates at the beginning of the calculation; these 
coordinates are the final goal. Surprisingly, the metric matrix can also be constructed from atom 

1 

2 

3 

d12 d23 

d13 

1 

2 

3 

d12 d23 

d13 

x 

y 

x1, y1 

x2, y2 

x3, y3 
d10 d30 

d20 
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distances. The coordinate system for the important distances is shown in Figure 3b. The origin is 
the geometric center or centroid of the molecule. The centroid is constructed so that 
 

 ∑xi = 0  ∑yi = 0  ∑zi = 0.      (3) 
 

The elements of the metric matrix can then be calculated from (see appendix A). 

 gij  = 
1
2 ( d

2
i0 + d

2
j0 - d

2
ij  )       (4) 

 

However, we still have a problem. The distances to the origin, di0 and dj0, can’t be calculated 
until we know the atom coordinates. However, a little bit of geometric reasoning allows the 
calculation of these distances (see appendix B). For N atoms: 
 

 d
2
i0  = 

1
N ∑

j≠i

N

d
2
ij   - 

1
N2 ∑

j=1

N

 ∑
k>j

d
2
jk       (5) 

 

For our triatomic example: 
 

 d
2
10  = 

1
3 ( d

2
12 + d

2
13 ) - 

1
32 ( d

2
12 + d

2
13 + d

2
23 )     (6) 

 

A simple numerical example may help at this point. Let the bond distances, d12 and d23, be 5 and 
the non-bonded distance, d13, be 6. Then 
 

 d
2
10  = 

1
3 ( 52+ 62) - 

1
32 ( 52+ 62+ 52) = 10.777  or  d10 = 3.283   (7) 

 d
2
20  = 

1
3 ( 52+ 52) - 

1
32 ( 52+ 62+ 52) =  7.111  or  d20 = 2.667   (8) 

 

Now the metric matrix entries can be calculated. For example g11 is easy since d11 in the second 
term of Eq 4 is 0. Substituting Eq 7 and 8 into Eq 4 gives: 
 

 g11 = 
1
2 ( d

2
10 + d

2
10 ) = 10.778  g12 = 

1
2 ( d

2
10 + d

2
20 - d

2
12 ) = -3.556 (9) 

 

Similar calculations give the final metric matrix: 
 

 G = 








10.778 -3.556 -7.222

-3.556 7.111 -3.556
-7.222 -3.556 10.778

       (10) 

 

Given the metric matrix, as calculated from the atom-atom distances, we now need a way to 
work back to the original coordinates. The atom coordinates can be calculated from the 
eigenvalues and eigenvectors of the metric matrix. We find the eigenvalues λq, and the 
eigenvectors wq by solving the equation: 
 
  G wq = λq wq         (11) 
 
Where q corresponds to the x, y, or z axes. Eigen means “the same” in German, and Eq 11 shows 
that starting with wq  on the left gives back wq on the right, multiplied by a constant, λq. In other 
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words, the same thing, wq, appears on both sides of the equation. The eigenvalues are a measure 
of the size of the molecule in the x, y, and z directions (principle moments of inertia, but with 
unit mass for each atom). The atomic coordinates can then be calculated for each atom i: 
 

 xi = λ1
½

 wi1  yi = λ2
½

 wi2  zi = λ3
½

 wi3   (12) 
 

You can calculate the eigenvalues and eigenvectors using an on-line Web applet.16 For our 
triatomic example, the eigenvalues and eigenvectors for the x and y directions are: 
 

 λ1 = 18     w1 = 








0.707

0
-0.707

   λ2 = 10.67    w2 = 








0.408

-0.816
0.408

   (13) 

 

Giving the final coordinates: 
 

 x1 = 181/2  0.707   = 3   y1 = 10.671/2  0.408 =  1.333  (14) 
 x2 = 181/2  0          = 0   y2 = 10.671/2 -0.816 = -2.667 
 x3 = 181/2 -0.707  = -3   y3 = 10.671/2  0.408 =  1.333 
 

These final coordinates are shown in Figure 4. Notice also that as Eq 3 requires, the sum of the x 
coordinates is zero and the sum of the y coordinates is also zero. 
 

Figure 4. Final coordinates after embedding. 
 
The remarkable thing about distance geometry is that it works just as well for thousands of atoms 
as it does for triatomic molecules. However, the calculation of the eigenvalues and vectors for 
large systems like proteins requires considerable computer time. 
 
General Procedure1-3 

The input for distance geometry programs is just the connection table. The complete embedding 
process requires four steps. 
   Step 1:   The first step is to specify the distance range between every 1-2, 1-3, and 1-4 atom pair 
using standard bond lengths and angles from a table. For 1-4 distances the minimum distance is 
set for a 1-2-3-4 dihedral angle of 0° and the maximum distance for 180°. For non-bonded atoms 
the minimum is set to the sum of the Van der Waals radii. Any distance constraints that you input 
are also included in the list of distances. All the distance ranges are then checked for consistency 
using the triangle inequality, Figure 5. For example, the maximum distance between a 1-3 atom 
pair is the sum of the 1-2 and 2-3 bond distances, d13  ≤  d12 + d23: 
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If the atoms are C-C-C, the standard bond length is 1.53Å giving a maximum 1-3 distance of 
2x1.53Å.  
 

Figure 5. Checking distance maximums for consistency. 
 
 
If an initially chosen maximum distance is larger than allowed by the triangle inequality, the 
value is lowered. This “smoothing” process helps to tighten the distance constraints. The 
minimum distances are also smoothed in the same way. The result is a set of consistent upper and 
lower bounds for all the pair-wise distances between the atoms. 
   Step 2:   Next a distance between each atom pair is chosen at random between the upper and 
lower bounds set in step 1. This step is an important feature of distance geometry. The 
assignment of a random distance means that you will obtain a different result each time you run 
the algorithm. This element of randomness is one of the advantages (and disadvantages) of the 
distance geometry approach that can be exploited for conformational searches. 
   Step 3:   The metric matrix is calculated from the chosen random distances. The eigenvalues 
and vectors are then calculated and used to find the final coordinates using Eq 12. 
   Step 4:   The coordinates generated by distance geometry are very rough. The atom positions 
must be optimized using molecular mechanics with a simplified force field. This adjustment 
process is done in two steps. First any chiral constraints are enforced. Working with chiral 
constraints first is necessary because molecular mechanics minimization can switch chirality 
inadvertently, and also enforcing chirality first makes subsequent minimization faster. After 
chiral constraints are satisfied, the coordinates are adjusted with a force field that greatly 
penalizes atom positions that violate the distance bounds that were established in Step 1. 
   The force field first checks to see if the distance between atom i and atom j, dij, is outside of the 
distance bounds; if outside an error term is calculated: 
 

 e =  
( d

2
ij  – B

2
ij  )

2
 

 B
2
ij

         (15) 

 

where Bij is the violated upper or lower bound. This error term is summed over all atom pairs 
that violate the distance bounds. Violations of the chiral constraints are also added to the distance 
errors to complete the force field. This force field is minimized using standard conjugate gradient 
techniques. The force field does not include bond stretch, angle bending, out-of-plane, and 
torsional constraints directly. Therefore, the optimized structure is only as good as the original 
distance bounds. In other words, the final structure is still quite crude and must be further 
minimized using a traditional force field or molecular orbital calculations. 
   For example, Figure 6a shows the results for toluene. The ring atoms are not flat as expected 
for sp2 hybridized atoms. The conformation around sp2 atoms can be improved by specifying the 
atoms as chiral atoms, even though they are not, alternating (+) and (-) around the ring. The 
distance geometry program will enforce a flat geometry, Figure 6b. 
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 a.      b. 
 

Figure 6. (a) Distance geometry results for toluene. (b) Distance geometry with sp2 C atoms 
specified as chiral. 
 
Even so, the results are still quite distorted from the expected planar geometry. Submitting the 
distance geometry results to a conventional molecular mechanics or molecular orbital calculation 
quickly clears up any remaining problems. The distance geometry results for complicated ring 
systems can often be quite good, however. 
 
Extensions to Distance Geometry 
Many extensions of the basic distance geometry procedure have been implemented that provide 
final structures with less strain.17,18 Distance geometry is also used in conjunction with molecular 
dynamics for energy minimization.19,20 The technique is often used for conformation searches,2, 

19,20 in aspects of drug discovery,21,23 and protein folding studies.24,25 
 
 
Appendix A:  
 

Given atom 1 with coordinates x1, y1, z1 and atom 2 with coordinates x2, y2, z2 the distance 
between the two atoms is: 
 

d
2
12 = (x1-x2)

2+(y1-y2)
2+(z1-z2)

2 = x1
2+2x1x2+ x2

2+ y1
2+2y1y2+ y2

2+ z1
2+2z1z2+ z2

2 (17) 
 

The dot product between the two atoms coordinates is x1x2+y1y2+z1z2. Rearranging Eq 17 to 
isolate the dot product gives: 
 

 d
2
12 =  (x1

2+ y1
2+ z1

2)+ (x2
2+ y2

2 + z2
2) + 2(x1x2 +y1y2 +z1z2)   (18) 

 

The first term in parenthesis is the squared distance of atom 1 from the origin, d
2
10 . The second 

term is the distance of atom 2 from the origin, d
2
20 . Rearranging Eq 18 gives: 

 

 (x1x2 +y1y2 +z1z2) = 
1
2 ( d

2
10 + d

2
20 - d

2
12 )     (19) 

 

(Many authors on distance geometry describe Eq 19 as the Law of Cosines, which is a standard 
geometrical construction. Given two vectors v→ and w→ , the dot product is: 

 v→ • w→  = | v→ ||w→ | cos θ = d10 d20 cos θ 
which explains the connection with the cosine of the angle and the name “Law of Cosines.”) 
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Appendix B: 
 

The fact that the distance of an atom from the origin can be calculated completely from the atom-
atom distances using Eq 5 is surprising. A derivation for three atoms, Eq. 6, is given in this 
appendix. A more general derivation is given by Havel, et. al.26 However, the general formula is 
easily obtained from the three atom result. The distance of atom 1 from the origin is 

 d
2
10 = x

2
1 + y

2
1 + z

2
1         (20) 

 

The origin is the centroid of the atoms, Eq. 3: 
 

 x1 + x2 + x3 = 0 y1 + y2 + y3 = 0 z1 + z2 + z3 = 0  (21) 
 

Solving for the coordinates of atom 1 gives: 
 

 x1 = - x2 - x3  y1 = - y2 - y3   z1 = - z2 - z3   (22) 
 

Substituting Eq 22 into Eq 20 for one factor of x1, y1, and z1 gives: 

 d
2
10 = –x1x2 – x1x3 – y1y2 – y1y3 – z1z2 – z1z3     (23) 

 

Rearranging gives two dot products: 

 d
2
10 = – ( x1x2 + y1y2 + z1z2 ) – ( x1x3 + y1y3 + z1z3 )    (24) 

 

Using Eq 19 for the dot products gives: 

 d
2
10 = - 

1
2 [ ( d

2
10 + d

2
20 - d

2
12 ) + ( d

2
10 + d

2
30 - d

2
13 )]    (25) 

Rearranging gives: 

 4 d
2
10 =  (d

2
12 - d

2
20 ) + (d

2
13 - d

2
30 )      (26) 

Subtracting a term in d
2
10 from both sides gives: 

 3 d
2
10 =  d

2
12 + d

2
13 - ( d

2
10 + d

2
20  + d

2
30 )     (27) 

The corresponding results for the other two atoms are 

 3 d
2
20 =  d

2
12 + d

2
23 - ( d

2
10 + d

2
20  + d

2
30 )     (28) 

 3 d
2
30 =  d

2
13 + d

2
23 - ( d

2
10 + d

2
20  + d

2
30 )     (29) 

 

Adding Eqs 27-29 gives: 

 3( d
2
10 + d

2
20  + d

2
30 ) = 2(d

2
12 + d

2
13 + d

2
23 ) - 3( d

2
10 + d

2
20  + d

2
30 )  (30) 

 

Solving for the sum squared distances to the origin gives a result entirely in terms of atom-atom 
distances: 

  ( d
2
10 + d

2
20  + d

2
30 ) = 

1
3 (d

2
12 + d

2
13 + d

2
23 )     (31) 

 

Finally substituting Eq 31 for the last term in Eq 27 gives: 

 3 d
2
10 =  d

2
12 + d

2
13 - 

1
3 (d

2
12 + d

2
13 + d

2
23 )     (32) 

 

Finally division by 3 gives Eq. 6. 
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Introduction Section 7 
Free Energy Perturbation Theory, FEP 

 
   The greatest value in molecular dynamics is the ability to model the internal motions of a 
molecule. Internal energy, enthalpy, entropy, and Gibb's Free Energy all include contributions 
from the motion of a molecule. Therefore, molecular dynamics provides a way to estimate these 
important thermodynamic parameters. The current best method for practical calculations of 
Gibb's Free Energies is free energy perturbation theory, based on molecular dynamics. Free 
energy perturbation (FEP) theory is now in use in calculating ∆G for a wide variety of processes. 
For example, the Gibb's Free Energy of solution of hydrophobic molecules1, of binding of crown 
ethers to polar organics2, and the binding of NADP and NADPH to dihydrofolate reductase3 
have been studied. In fact, the combined insights of x-ray crystal structure determination, NMR 
solution structure determination, and FEP studies have led to the consensus that the motions of 
proteins and nucleic acids play a major role in binding interactions. W. L. Jorgensen, in his 
article "Rusting of the Lock and Key Model for Protein-Ligand Binding," states simply that: 
 

 "These examples confirm the reasonable expectation that flexible molecules distort 
 to form optimal interactions with binding partners."4 

 

A dynamic view of binding interactions is necessary to understand biochemical phenomena. 
   Molecular mechanics calculates the steric energy of a molecule at absolute zero in temperature. 
What is the connection of the molecular mechanics steric energy to the thermodynamic internal 
energy and Gibb's Free energy of a substance? The hypothesis that makes the most sense is that 
the internal energy, ∆U, is the time average of the total energy of the molecule. The total energy 
of the molecule is the kinetic plus potential energy: 
 

   E = kinetic energy + potential energy     1 
 

The potential energy is just the molecular mechanics steric energy. Molecular dynamics provides 
us with the time dependent energy of the molecule; all we need do to get ∆U is average the total 
energy during the trajectory calculation. 
    Now we turn to the relationship of the steric energy to the Gibb's Free Energy. In statistical 
mechanics, we find that the probability of a given state of a system occurring is proportional to 
the Boltzman weighting factor: 
 

   probability of occurrence  α  e-E/RT     2 
 

where E is the total energy of the system, Eq. 1. In other words, states with low total energy are 
more likely to occur than states with high energy. A state of the system is determined by the 
conformation and motion of the molecule. The conformation determines the steric energy and the 
motions determine the kinetic energy.  
   In perturbation theory, we look at the effect of a small change in the structure of a molecule on 
its energy. To do the perturbation, the total energy is divided into two parts 
 

   E = Eo + E1         3 
 

where Eo is a reference structure and E1 is a small perturbation from the reference structure. The 
perturbation is a small change that we place upon the system, say a small change in bond angle or 
a small change in the charge on an atom. The corresponding change in free energy of the system 
caused by the perturbation is given as5,6 
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   G - Go = -RT ln < e-E1/RT>o      4 
 

where < >o denotes the time average over the motion of the reference structure from a molecular 
dynamics run. The e-E1/RT term is the probability of occurrence for the small change in  energy 
caused by the perturbation, from Eq. 2. The free energy then depends on the time average of the 
probability of occurrence of the perturbed structure. In other words, if the perturbation produces a 
small change in energy, that change will contribute to the Gibb's Free energy. 
   In our case however, we wish to find the change in free energy for large changes in a molecule. 
These changes, or mutations, include changing the conformations of bonds, or attaching a 
hydrogen ion, or changing a hydrogen to a methyl group or even a phenyl group. For example, 
we might like to mutate glycine into alanine7 for a study of site-specific mutagenesis of an 
enzyme. How do we apply Eq. 4 to such large changes? Assume that we wish to mutate molecule 
B into a different molecule A. First we define a total energy for mutating molecule B to A as 
 

   Eλ = λ EA  + ( 1 - λ ) EB      5 
 

where EA is the total energy for A and EB is that for B, and λ is the coupling parameter. When λ 
= 1 the energy corresponds to molecule A, and when λ= 0 the energy corresponds to molecule B. 
When λ is at intermediate values, the system is a hypothetical superposition of A and B. It might 
seem quite strange to have such a combination of two molecules, in fact it is very unphysical; 
however, the theory is well-behaved and very useful none-the-less. 
   For the complete mutation to take place we vary λ from 0 to 1 over the course of the dynamics 
run. We divide this full range into short time slices, which are short enough that we can treat the 
change in each time slice as a perturbation. Then we apply Eq. 4 to each time slice and then add 
up the result for all the time slices. Let the λ value at each time slice be numbered λ1, λ2, λ3, etc. 
Then the difference in Eq. 4 is ∆G(λi) for each time slice, i=1, 2 ,3,...n, for n total time slices. 
Then the total change in ∆G for the perturbation is 
 

  ∆GB->A  = ∑
i=1

n
 ∆G(λi)         6 

 

   Since each time slice in the mutation is a small change, we can simplfy Eqs. 4 and 6. We do the 
mutation is small steps; therefore E1 << RT for each time slice in the perturbation. Remembering 
that e-x ≈ 1-x,  we can expand the exponential in the Boltzman distribution: 
 

   e-E1/RT ≈  1 - E1/RT        7 
 

Then Eq. 4 simplifies to: 
 

  G - Go = -RT ln < 1 - E1/RT>o = -RT ln ( 1 - < E1>o/RT )   8 
Next remember that ln(1-x) ≈ -x, when x is small. This approximation on Eq. 8 gives: 
 

  G - Go = -RT ( - < E1>o/RT ) = < E1>o     9 
 

In words, this simple result means that the change in Gibb's Free Energy for a perturbation is just 
the time average of the total perturbation energy. Now applying Eq. 9 to each time slice in the 
total mutations simplifys Eq. 6 to: 
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 ∆GB->A  = ∑
i=1

n
 < E(λi)  >o        10 

 

where E(λi) is the total energy  for the time slice in the mutation from Eq. 5. This very simple 
result makes FEP studies easy to do. The time average in Eq. 9 is automatically calculated during 
trajectory calculations. All we need do is to change λ in small steps during the trajectory. This 
approach to FEP simulations is called the slow-growth method. 
  Our initial efforts to use molecular dynamics are frustrated, however, because 
molecular dynamics is a classical theory, which gives too high a weight to high frequency 
vibrations. We must be careful to account for the difference between classical theories and the 
true distribution of vibrational energies in molecules. We can do this by always calculating the 
difference between our system and a reference system. In calculating differences, errors tend to 
cancel, and in so doing, classical molecular dynamics is a suprisingly useful tool for 
understanding complex systems. The success of classical dynamics is due in part to the 
observation that the major contributions to ∆G for solvation and binding interactions are low 
frequency vibrations, especially torsions, which are handled adequately by classical theory. In 
addition, these low frequency vibrations tend to change the most in systems of interest; high 
frequency vibrations change little, therefore the high frequency vibrations cancel out in 
comparisions.  
   For example, to study the Gibb's Free Energy of solvation of molecule B, ∆solGB, we will 
choose molecule A as the reference structure. The mutation will then be from B to A. To 
determine the difference in Free Energy of solvation between B and A, we will construct the 
following thermodynamic cycle: 
 

   ∆solGA 
  A (aq)     ---->        A (g) 
  ↑    | 

        ∆G
aq
B->A  |    |   −∆G

g
B->A       11 

  | ∆solGB  ↓ 

  B (aq)     ---->        B (g) 
 

where ∆G
aq
B->A  is the Free Energy of perturbation of B to A in the solution phase, and 

∆G
g
B->A  is the Free Energy of perturbation in the gas phase. Adding contributions around the 

cycle gives: 
 

  ∆solGB = ∆G
aq
B->A  + ∆solGA  − ∆G

g
B->A      12 

 

We then determine the difference 

   ∆solGB - ∆solGA =  ∆G
aq
B->A   − ∆G

g
B->A      13  

 

These kinds of differences are often called ∆∆G values: 
 

  ∆∆G =  ∆solGB - ∆solGA =  ∆G
aq
B->A   − ∆G

g
B->A     14 
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We choose a reference system, A, where ∆solGA is known from experiment. We can then predict 
our final result: 
   ∆solGB = ∆solGA(experimental)  + ∆∆G      15 
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Section 8: 
 Continuum Solvation Electrostatics 

 
Molecular binding events control most of the processes in living cells. Binding interactions 
include enzyme substrate binding, allosteric control of enzyme activity, protein nucleic acid 
binding, and protein-protein binding. Protein-protein binding is important because most of the 
enzymes in the cell function as a part of a protein complex and are not active as individual 
molecules. Molecular binding is very specific. Biomolecules have evolved over time to interact 
only with specific substrates or other biomolecules. This specificity is achieved through careful 
control of molecular recognition. Molecular recognition is the result of specific intermolecular 
forces. These forces include, in order of strength, hydrogen-bonding, charge-charge interactions 
(salt bridges), dipole-dipole interactions, π-π interactions, and hydrophobic interactions. The 
strength of all these forces also depend critically on interactions with the solvent. For example, 
hydrophobic interactions are completely solvent driven. It is the central role of the solvent that 
this section will explore. 
   The effect of solvation on molecular recognition can be striking. For example, the hydrogen 
bond that forms in proteins, the peptide hydrogen-bond, Figure 1a, is quite strong in the gas 
phase. The gas phase interaction energy is roughly 20 kJ/mol. However, in aqueous solution the 
peptide hydrogen-bond strength is much weaker, less than ~5 kJ/mol1. 
 

O N H O N H

  

N
+

H

H
H

O

O

 
(a)      (b) 
 

Figure 1. (a) Peptide hydrogen bond, (b) Salt bridge between glutamate and lysine. 
 
Salt bridges in proteins are another example of strong solvation effects. Salt bridges form in 
proteins from the electrostatic interaction of acidic and basic amino acid side chains. The salt 
bridge between glutamate and lysine is a common structural element, Figure 1b. Salt bridges in 
proteins can be either stabilizing or destabilizing depending on the solvation Gibbs Free energy 
of the ions and the environment of the salt bridge in the folded protein. In short, it is impossible 
to study molecular recognition without a detailed knowledge of solvation. 
   It is frustrating that so little is really known about these fundamental forces that are so 
important in molecular recognition and protein folding. Changing our calculations from the gas 
phase to the aqueous environment, where the dielectric constant is ~80, should have a large effect 
on molecular interactions. The difficulty is how to treat the solvent waters. In several exercises in 
this Tutorial we do molecular dynamics calculations using discrete water molecules. However, 
these calculations can be very time consuming. Continuum solvation models have been 
developed by Clark Still's group at Columbia and many others that are designed to improve 
molecular mechanics calculations in solvent. Many molecular mechanics and molecular orbital 
programs include continuum solvation calculations. 
   In continuum solvation models, the solvent is modeled as a continuous, uniform environment 
with a relative dielectric constant, εr. Since there are no discrete water molecules, very specific 
interactions such as extensive hydrogen bonding to the primary solvation sphere or very 
directional dipole-dipole interactions cannot be studied. However, the continuous solvent model 
does allow the study of the stabilization and destabilization of polar species in a polar solvent 
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environment. Continuum solvation treatments are also very popular with organic chemists for 
studies of solution conformations of molecules and the stabilization of polar transition states. 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Continuum solvation model 
 

   Continuum solvation energetics are roughly based on the following model. The electrostatic 
distribution in the molecule is modeled by point charges that are placed at each nucleus. The 
molecule is then placed in a cavity in the uniform solvent. The size of the cavity is determined 
roughly by the Van der Waals surface of the molecule. The dielectric constant inside this cavity 
is taken to be that of a vacuum. The solvent is assumed to have a uniform constant relative 
dielectric constant of εr, which for water is 78.54. The presence of charges in the molecule 
polarizes the solvent, Figure 1. These induced charges, or image charges, effectively “mirror” the 
charges on the molecule. Remember that the electrostatic energy of two charges, qi and qj, 
separated by a distance r in a medium with constant relative dielectric constant εr is given by the 
Coulomb energy, Figure 1: 
 

 εCoulomb =
qiqj

4πεr εo r
        (1) 

 

 
 
 
 
 
 
 

Figure 1. The Coulomb potential for two charges, qi and qj, of the same sign in a uniform 
dielectric. The relative dielectric constant of the solvent screens, that is attenuates, the 
interaction. The screening is symbolized by the gray background. 

 
The effect of the polar environment of the solvent can then be roughly described as being 
calculated from the electrostatic energy of interaction of the induced image charges in the solvent 
with the point partial charges on the atoms in the molecule. 
 
Gibbs Free Energy of Solvation 
 

   The Gibbs Free Energy of solvation is approximated as 
 

 ∆solG = ∆solGVdW + ∆solGcav + ∆solGelec 
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where ∆solGVdW is the solute-solvent Van der Waals interaction, and ∆solGcav is the work 
necessary to create the cavity in solvent. ∆solGcav is calculated by 
 

∆solGcav  = (surface tension)(surface area) = γ σ 
 

This term arises from the entropy penalty for rearrangement of water molecules and is 
unfavorable. The ∆solGVdW are ∆solGcav terms are often combined since both are approximately 
proportional to the solvent accessible surface area. The combined Van der waals and cavity 
surface tension, γ, is approximately in the range 7-10 J/Å2. Different authors and programs use 
different values; we will use ∆solGVdW + ∆solGcav = 7 J/Å2 ASA. ∆solGelec is the work necessary to 
transfer ion from vacuum to solution with the calculated electrostatic potential. 
   Now consider a small spherical ion in solution. In electrolyte solutions ∆solGelec also includes 
the potential of the ionic atmosphere of neighbor ions j. The neighborhood of an ion is 
predominately comprised of the counter ions of opposite charge. For example for a positive ion, 
qi, the counter ions of charge qj form a negatively charged halo around the positive ion. The 
Coulomb interaction of the ion with this halo is then stabilizing, that is negative in energy, Figure 
2. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. For electrolyte solutions a positive ion is surrounded by a halo of negative ions. 
The Coulomb interaction is negative for these interactions. 

 
The Coulomb potential energy can be broken into the product of the electric potential multiplied 
by the charge on the ion of interest. We will call the ion of interest the central ion, i. 
 

 V(r) = φi qj 
 

Comparison with Eq. 1 shows that the electric potential at ion i due to the presence of ion j is 
 

 φi = 
qi

4πεrεo rij
 

 

The effect of the dielectric constant of the solvent, εr, is to attenuate the charge-charge 
interaction. However, the presence of counter ions also screen the interaction of two charges. 
   The screening caused by the ionic atmosphere is determined by the distribution of counter ions 
near the solute ion, p(r) dr, which is the probability of finding a counter ion at a distance r to 
r+dr. This distribution is given by the Boltzmann distribution using the energy of the interaction 
of the solute ion, i, with a counterion, j, given by φi(r)qj. The number of counterions that will be 
found at a given point a distance r from the solute ion is 
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 Nj = Noj e
-φi(r)qj

kT  
 

where Noj is the number of ions j in solution. The Boltzmann constant k is the gas constant per 
molecule, R/NA. The probability of finding an ion j at any angle at a radius of r from the central 
ion is: 
 

 pj(r) dr = 4πr2Noj e
–φi(r)qj 

kT dr 
 

Here the 4πr2dr is the annular volume at all angles between the radius of r and r+dr. This 
probability distribution of the counter ion halo is shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The distribution of counter ions around a solute ion. This oppositely charged halo 
has a probability maximum at the Debye length, rD. 

 
The Boltzmann distribution takes into account the thermal jostling of molecular collisions within 
the solvent that disrupt the ionic halo. The exponential decrease of the Boltzmann distribution at 
a point and the r2 increase of the volume at r to r+dr multiply to give a distribution that has a 
maximum. This distance is called the Debye length, rD. The Debye length is a measure of the 
thickness of the ionic atmosphere. Finding the maximum in the probability distribution gives, for 
very dilute solutions with uniform solvent dielectric and unipositive and uninegative ions (e.g. 
NaCl) 
 

 rD = 
305. pm
(m/m°)½  = 

1
κ  

 

Where the term in the denominator is just the square root of the ionic strength. The Debye length 
is often specified by the reciprocal parameter κ. The polarization of the solvent and the ionic halo 
determine the electric potential at each point in the solution. Once the electric potential is known 
the probability distribution of the ions can be calculated. Unfortunately, these calculations 
depend on each other. A common approach is to first make a rough guess of the potential and 
then to solve for the counterion distribution. This distribution is then used to calculate a better 
guess for the electric potential. This process of successive approximations is continued until the 
electric potential no longer changes. 
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   The electric potential is then used to calculate ∆solGelec. First the work necessary to charge the 
solute ion within the solution is calculated: 
 

 wel = ⌡⌠
0

Zie φi dq 

The electrostatic contribution to the Gibbs Free Energy of solvation can then be calculated by 
finding the difference between the electrical work necessary to charge the ion in the solvent and 
the work to charge the ion in vacuum: 
 

 ∆solGelec = NA welec(real) – NA welec(ideal) = NA wsolution – NA wvacuum  
 

Poisson Equation1 

 

The electric potential is calculated from the Poisson equation, for non-electrolyte solutions or the 
dilute solution limit for electrolyte solutions. The Poisson equation depends on the charge density 
within the solution. For ion type i with the charge on the ion qi the charge density is: 
 

 ρi(r) = qi pi(r) 
 

The charge density is the charge per unit volume, which depends on the polarization of the 
solvent and the distribution of ions in the halo around the solute. The Poisson equation also 
depends on the spatial variation of the dielectric constant, ε(r) =  εo εr(r). The Poisson equation is 

 ∇2 φi(r) = – 
ρi(r)
ε(r)

 

where 
 

 ∇2 =  
∂2

∂x2 + 
∂2

∂y2 + 
∂2

∂z2 

 

is the curvature or wiggliness of the electric potential. The Poisson equation shows that the 
higher the charge density the faster the potential drops, Figure 4. 
 
 
 
 
 
 
 
 

Figure 4: The higher the charge density, the higher the curvature of the electric potential. 
The higher the curvature, the faster the electric potential decreases with distance away from 
the solute. The charge density screens the electrostatic interactions. 

 
 
For a spherical potential the curvature simplifies to1: 
 

 
1
r  

∂2(r φi(r))

∂r2  = – 
ρi(r)
ε(r)

 

 

   To get a feeling for the Poisson equation we start with a very simple model. This model is for 
electrolyte solutions of small ions. The result is the Debye-Hückel model, when applied to very 
dilute solutions. The ions are modeled as point charges embedded in a uniform solvent. Ions in 

r 

φi(r) 

∇2φi higher 
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this model do not have a "size." For a uniform solvent dielectric, εr(r) = εr. The charge density is 
the sum of the charge density for the positive and negative ions in solution: 
 

 ρ+ = q+
N+

V  e
-φi(r)q+

kT   ρ- = q-
N-

V  e
φi(r)q-

kT  

 ρions = ρ+ + ρ- = q+
N+

V  e
-φi(r)q+

kT  + q-
N-

V  e
φi(r)q-

kT  
 

The concentration of ions is also assumed to be very small so that φi(r) << kT and the exponential 
term in the Boltzmann distribution simplifies to: 
 

 e
-φi(r)qj

kT ≈ 1 – 
φi(r)qj

kT
  

 

Then the charge density of the ions simplifies to 
 

 ρions = ρ+ + ρ- = q+
N+

V  (1 – 
φi(r)q+

kT
 ) + q-

N-

V  (1 – 
φi(r)q-

kT
 ) 

 ρions = ( q+
N+

V  + q-
N-

V  ) – (q+No
φi(r)q+

kT
 + q-

N-

V  
φi(r)q-

kT
 ) 

 

The first term cancels because of charge neutrality; the numbers of positive and negative charges 
are equal, which gives: 
 

 ρions = – 
φi(r)
kT

  (q+
2N+

V + q-
2N-

V ) 

 

The term in parentheses is the ionic strength. If there are several sources of ions, this sum must 
include all the ions in solution. With qj = zj e and zj the charge number on ion j: 
 

 ρions = – 
φi(r)
kT

  ∑
j=1

s

 qj
2 Nj

V   =  
φi(r)e

2

kT
  ∑

j=1

s

 zj
2 Nj

V   

 

Then κ, the inverse Debye length, is defined as: 

 κ2 =  
e2

εrεo kT
  ∑

j=1

s

 z2
j  





Nj

V  

The Nj/V term is the number concentration with Nj equal to the number of ions of type j in 
solution, and V the volume of the solution in m3. Substitution into the Poisson equation gives the 
much simpler result: 
 

 
∂2(r φi(r))

∂r2  = κ2 (r φi(r)) 

 

The solution to this equation is in the form: 
 

 φi(r) = 
A
r  e

-κr
 

The A constant can be evaluated using the appropriate boundary conditions giving 
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 φi(r) =
qj

4πεoεr r
 e

-κr
 

 

This result is called the shielded Coulomb potential, which takes into account the dielectric and 
the interaction of the solute ion with its oppositely charged ionic atmosphere. The concentrations 
can be converted into molality using: 
 

 mj = 
Nj/NA

V (1000 L m-3) do
 

where do is the density of the solution in kg L-1, which is equivalent to g mL-1. The substitution 
gives: 
 

 κ2 = 
e2 (1000 L m-3) do NA mo

εrεo kT
 ∑
j=1

s

z2
j  mj/m° 

and the summation is just the ionic strength 

 I = 
1
2 ∑

j=1

s

z
2
j  mj/m° 

 

This model gives the Debye-Hückel result for the activity coefficient of the ion in solution when 
the electrical work is calculated (see below for a similar example). The Debye-Hückel approach 
assumes that RT ln γ± = wel NA. 
   The shielded Coulomb potential reduces to Coulomb's Law for very dilute solutions, because 
the exponential term in the shielded Coulomb potential approaches 1: 

I→0 ,   κ→0 ,    rD →∞ ,  e
-κr

≈ 1 - κr → 1 ,  φi(r) → Coulomb’s Law 
 
 
Born Approximation  
 

   Modeling ions as point charges with no radius is very approximate. A model that takes into 
account the size of the ion has been developed, which is called the Born approximation. The ion 
is modeled as a point charge in spherical cavity of radius ri. The relative dielectric constant inside 
the sphere is that of a vacuum, εr = 1, and the solvent outside of the ion radius is assumed to be 
uniform with dielectric constant εr, Figure 5. The model applies to very dilute electrolytes or non-
electrolyte solutions. In other words there are no counter ions as in the example above. The 
solution to the Poisson equation is now more involved because the dielectric constant changes 
with position as well as the charge density. We simply present the results here. The electric 
potential at the center of a spherical ion of radius ri in the Born approximation is: 
 

 φi(0) = 
qi

4πεoεr ri
  

 
 
 
 
 
 

Figure 5: The Born Approximation assumes a charge in a spherical cavity of radius ri with 
εr = 1 inside the cavity and εr constant for the uniform solvent for r > ri. 

+ 

εr= 78.54 

εr = 1 

ri 
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The presence of the ion polarizes the dielectric in the bulk solvent. The actual charge density in 
the bulk of the solvent remains small, because the polarization dipoles in each water molecule 
cancel each other, except at the boundaries.5 However, a surface charge is induced at the cavity 
surface, which is oppositely charged from the ion, Figure 6. This surface charge creates an 
electric potential at the center of the sphere. The spatial variation of the electric potential creates 
an electric field at the center of the ion, which is called the reaction field.5 The surface charge can 
be shown to behave like a "image" charge that is in the bulk of the solvent opposite the point 
charge on the ion, Figure 1.5 These image charges are discussed in the introduction to this 
section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: The ion polarizes the solvent. The solvent dipoles don't cancel at the surface of the 
cavity, giving a surface charge. The surface charge generates a potential at the point charge 
representing the ion. The field from the induced surface charge is called the reaction field. 
 
 
   The electric work in charging the ion can now be calculated1: 
 

 dwel = φi dq  
 

 wel = ⌡⌠
0

Zie φi dq = 
1

4πεoεr ri
 ⌡⌠

0

Zie qi dqi  

 

You might wonder why the work is not simply just φi qi, since an ion has an integral charge, +1e, 
+2e, -1e, etc. The integral takes into account the "self-interaction." That is the charge is 
visualized as being added in small increments. Each new increment interacts with the charges 
that have built up from previous increments, Figure 7, and the integral is: 
 

 ⌡⌠ qi dqi = 
q2

i

2  

 
 
 
 
 

Figure 7: The electrical work integral is done in small steps. 
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The electrical work is then: 

 wel = 
z2

i  e2

8πεoεr ri
 

 

The electrostatic contribution to the Gibbs Free Energy of solvation is then the difference: 
 ∆solGelec = NA wsolution – NA wvacuum  

which is: 

 ∆solGelec  =  
z2

i  e2NA

8π ri
 






1

εrεo
 – 

1
εo

  = – 
z2

i  e2NA

8πεo ri
 






1 – 

1
εr

 

 
 
Generalized Born Approximation 
 

The result above is for a simple spherical ion. In the Generalized Born approximation, the 
electrostatic energy is a sum of this form over all the atoms in a solute molecule1. For molecules 
the partial charges that are placed at the nucleus of each atom replace the charge on the ions 
given above. To complete the calculation of the solvation Gibbs Free Energy, the cavity and Van 
der Waals terms must be added in. Because these terms depend on the solvent accessible surface 
area of the solute, the general formulation of the Born approximation for molecules and non-
spherical ions is called the Generalized Born/Solvent accessible Surface Area approach, or 
GB/SA for short. 
   The GB/SA method is very rapid and does a reasonable job of modeling non-specific solvation 
effects. These effects are mainly the screening effect of the dielectric constant of the solvent and 
the ionic halo. The approach also accounts for the stabilization of polar solutes that results from 
solvent polarization. These electrostatic terms primarily affect the enthalpy of solvation. The 
entropy changes are accounted for in the cavity term. 
   The GB/SA approach can be used for any solvent, and not just water. The dielectric constant of 
the solvent is required. In addition, the average solvent molecule radius is necessary to calculate 
the solvent accessible surface area. In other words, larger solvents can't approach the solute as 
closely and the corresponding solvent accessible surface area is larger. The surface tension is also 
needed for the chosen solvent. These calculations are very useful for organic mechanisms. 
   The Generalized Born approximation and more advanced electrostatic treatments are also 
becoming extremely important in modeling the surfaces of proteins and nucleic acids.3,4 The 
combination of the partial charges on the amino acids in a protein and the polarization of the 
solvent can create strong electric fields near the surface of proteins that may help guide substrates 
into the active sites of enzymes and may help orient proteins for efficient protein-protein binding. 
In other words, solvation effects have an important influence on molecular recognition. 
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Section 9 
Classical Normal Mode Analysis: Harmonic Approximation 

 
The vibrations of a molecule are given by its normal modes. Each absorption in a vibrational 
spectrum corresponds to a normal mode. The four normal modes of carbon dioxide, Figure 1, are 
the symmetric stretch, the asymmetric stretch and two bending modes. The two bending modes 
have the same energy and differ only in the direction of the bending motion. Modes that have the 
same energy are called degenerate. In the classical treatment of molecular vibrations, each 
normal mode is treated as a simple harmonic oscillator. 
 

 
 
 
 

     Symmetric stretch        Asymmetric stretch Bend   Bend 
 

Figure 1. Normal Modes for a linear triatomic molecule. In the last bending vibration the motion 
of the atoms is in-and-out of the plane of the paper. 
 
 

   In general linear molecules have 3N-5 normal modes, where N is the number of atoms. The 
five remaining degrees of freedom for a linear molecule are three coordinates for the motion of 
the center of mass (x, y, z) and two rotational angles. Non-linear molecules have three rotational 
angles, hence 3N-6 normal modes. 
   The characteristics of normal modes are summarized below. 
 
Characteristics of Normal Modes 
1. Each normal mode acts like a simple harmonic oscillator. 
2. A normal mode is a concerted motion of many atoms. 
3. The center of mass doesn’t move. 
4. All atoms pass through their equilibrium positions at the same time. 
5. Normal modes are independent; they don’t interact. 
 
In the asymmetric stretch and the two bending vibrations for CO2, all the atoms move. The 
concerted motion of many of the atoms is a common characteristic of normal modes. However, 
in the symmetric stretch, to keep the center of mass constant, the center atom is stationary. In 
small molecules all or most all of the atoms move in a given normal mode; however, symmetry 
may require that a few atoms remain stationary for some normal modes. The last characteristic, 
that normal modes are independent, means that normal modes don’t exchange energy. For 
example, if the symmetric stretch is excited, the energy stays in the symmetric stretch. 
   The background spectrum of air, Figure 2, shows the asymmetric and symmetric stretches and 
the bending vibration for water, and the asymmetric stretch and bending vibrations for CO2. The 
symmetric stretch for CO2 doesn’t appear in the Infrared; a Raman spectrum is needed to 
measure the frequency of the symmetric stretch. These absorptions are responsible for the vast 
majority of the greenhouse effect. We will also use CO2 as an example, below. 
   The normal modes are calculated using Newton’s equations of motion.1-4 Molecular mechanics 
and molecular orbital programs use the same methods. Normal mode calculations are available 
on-line.5 

• • 
 + 
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Figure 2. The Infrared spectrum of air. This spectrum is the background scan from an FT-IR 
spectrometer. 
 
 

Harmonic Oscillator Review 
Lets first review the simple harmonic oscillator. Consider a mass m, supported on a spring with 
force constant k. Hooke’s Law for the restoring force for an extension, x, is F = -kx. In other 
words, if the spring is stretched a distance x>0, the restoring force will be negative, which will 
act to pull the mass back to its equilibrium position. The potential energy for Hooke’s Law is 
obtained by integrating 

 F = - 
dV
dx = -kx         (1) 

to give V = 
1
2 k x2          (2) 

In molecular mechanics and molecular orbital calculations, the force constant is not known. 
However, the force constant can be calculated from the second derivative of the potential energy. 

 k = 
d2 V
dx2           (3) 

The Hooke’s Law force is substituted into Newton’ Law: 

 F = ma   or  m 
d2 x
dt2  = -kx      (4) 

and solved to obtain the extension as a function of time: 
 x(t) = A sin(2πνt)         (5) 
where ν is the fundamental vibration frequency and A is the amplitude of the vibration. Taking 
the second derivative of the extension gives  

 
d2 x
dt2  = -4π2ν2 x         (6) 

Substituting Eq 6 back into Eq 4 gives: 
 -4π2ν2 m x = -kx        (7) 
which is the basis for the classical calculation of the normal modes of a molecule. 
 

Asymmetric stretch: 
CO2 2349 cm-1 

Bend: 
CO2 667 cm-1 

Asymmetric stretch: 
H2O 3756 cm-1 

Symmetric stretch: 
H2O 3652 cm-1 

Bend: 
H2O 1595 cm-1 
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Normal Mode Analysis 
 
For molecules the x, y, z coordinates of each atom must be specified. The coordinates are: 
 Atom 1: X1, Y1, Z1,   Atom 2: X2, Y2, Z2,       etc. …… 
The extensions are the differences in the positions and the equilibrium positions for that atom: 
 

 Atom 1: x1 = X1 – X1,eq  y1 = Y1 – Y1,eq  z1 = Z1 – Z1,eq  (8) 
 Atom 2: x2 = X2 – X2,eq  y2 = Y2 – Y2,eq  z2 = Z2 – Z2,eq 
 Atom i:  xi = Xi – Xi,eq  yi = Yi – Yi,eq  zi = Zi – Zi,eq 
 

Where Xi,eq, Yi,eq, and Zi,eq are the equilibrium (energy minimized) positions for atom i. For 
example, if x1, y1, and z1 are all zero, then atom 1 is at its equilibrium position. Molecular 
mechanics or molecular orbital calculations are used to find the potential energy of the molecule 
as a function of the position of each atom, V(x1, y1, z1, x2, y2, z2, x3, y3, z3,...,xN,yN,zN). 
The second derivative of the potential energy can then be used to calculate the force constants, 
Eq 3. However, there are now 3Nx3N possible second derivatives and their corresponding force 
constants. For example, 

 
∂2V
∂ x1

2 = k
11
xx         (9) 

is the change of the force on atom 1 in the x-direction when you move atom 1 in the x-direction. 
Similarly, 

 
∂2V

∂x1∂y2
 = k

12
xy         (10) 

is the change of the force on atom 1 in the x-direction when you move atom 2 in the y-direction. The 
various types of force constants are shown in Figure 3. 
 
 
∂2V
∂ x1

2 = k
11
xx  same atom same direction 

 
∂2V
∂ y1

2 = k
11
yy  same atom same direction 

 
∂2V

∂x1∂y1
 = k

11
xy  same atom different directions 

 
∂2V

∂x1∂x2
 = k

12
xx  different atom same direction 

 
∂2V

∂x1∂y2
 = k

12
xy  different atom and direction 

 
Figure 3. Types of second derivatives and force constants 
 
 
These force constants are not the force constants for individual bonds, they are force constants 
for the motion of a single atom subject to all its neighbors, whether directly bonded or not. The 

1 2 
 

1 2 
 

1 2 
 

1 2 
 

1 2 
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complete list of these force constants is called the Hessian, which is a 3Nx3N matrix. Eq 7 is 
then applied for each force constant.1,2 

 

 -4π2ν2 m1x1= -k
11
xxx1 - k

11
xyy1 - k

11
xzz1 - k

12
xxx2 -  k

12
xyy2 -…- k

1N
xzzN  (11) 

  

 -4π2ν2 m1y1= -k
11
yxx1 - k

11
yyy1 - k

11
yzz1 - k

12
yxx2 - k

12
yyy2 -…- k

1N
yzzN 

  : 

 -4π2ν2 m2x2= -k
21
xxx1 - k

21
xyy1 - k

21
xzz1 - k

22
xxx2 - k

22
xyy2 -…- k

2N
xzzN 

  : 

 -4π2ν2 mNzN= -k
N1
zxx1 - k

N1
zyy1 - k

N1
zxz1 - k

N2
zxx2 - k

N2
zyy2 -…- k

NN
zz zN 

 

In words, the right-hand sides of the above equations simply state that the total force on atom i is 
the sum of the forces of all the atoms on atom i. In addition, we need to keep track of the x, y, 
and z directions for each atom. There are a total of 3Nx3N terms on the right. All these terms are 
confusing. A simple example will help at this point. 
   For our example consider a symmetrical linear triatomic molecule that can only vibrate along 
the x-axis, Figure 4. CO2 is a good example of a symmetrical linear triatomic. 
 
 
 
 
Figure 4. A symmetrical triatomic molecule with vibrations limited along the internuclear axis. 
 
 
Because we have limited the vibrations to the x-axis, which is the internuclear axis, this model 
will provide the symmetric and asymmetric stretching modes, only. Eqs 11 then reduce to 

 -4π2ν2 m1x1= -k
11
xxx1 - k

12
xxx2 - k

13
xxx3      (12) 

 -4π2ν2 m2x2= -k
21
xxx1 - k

22
xxx2 -k

23
xxx3      (13) 

 -4π2ν2 m3x3= -k
31
xxx1 - k

32
xxx2 - k

33
xxx3      (14) 

 

since we only need to keep the x-terms. Several numerical techniques are available to solve linear 
sets of simultaneous equations such as this. Conventionally, however, the problem is simplified 
by converting to mass weighted coordinates, for example: 

 x1
~

  = m1 x1   x2
~

  = m2 x2 , etc.     (15) 
 

and mass weighted force constants: 

 k
~12
xx= 

k
12
xx

m1 m2
         (16) 

 

In the new mass weighted coordinates, Eqs 12-14 become: 
 

x O1 C2 O3 
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 -4π2ν2 x1
~

  = - k
~11
xxx1

~
  -  k

~12
xxx2

~
  -  k

~13
xxx3

~
      (17) 

 -4π2ν2 x2
~

  = - k
~21
xxx1

~
  -  k

~22
xxx2

~
  -  k

~23
xxx3

~
      (18) 

 -4π2ν2 x3
~

  = - k
~31
xxx1

~
  -  k

~32
xxx2

~
  -  k

~33
xxx3

~
      (19) 

 
For example, we can show that Eq 17 is equivalent to Eq 11, by substituting Eqs 15 and 16 into 
Eq 17. 

-4π2ν2 m1 x1 = -
k

11
xx

m1 m1
 m1 x1 - 

k
12
xx

m1 m2
 m2 x2 - 

k
13
xx

m1 m3
 m3 x3  (20) 

 

Canceling mass terms and multiplying both sides by m1 gives Eq 11. 
   Eq 17-19 are most easily written in the equivalent matrix form: 
 

- 















k

11
xx

m1 m1
 

k
12
xx

m1 m2
 

k
13
xx

m1 m3

 
k

21
xx

m2 m1
 

k
22
xx

m2 m2
 

k
23
xx

m2 m3

 
k

31
xx

m3 m1
 

k
32
xx

m3 m2
 

k
33
xx

m3 m3









x1

~

x2
~

x3
~

= -4π2ν2 









x1

~

x2
~

x3
~

    (21) 

 
The mass weighted force constants give a symmetric matrix. In other words, the corresponding 
off diagonal elements are equal. Eq 21 is an eigenvalue-eigenvector equation. The eigenvalues 
are the negative of the squared normal mode frequencies. The eigenvectors are the mass weighted 
normal coordinate displacements (see Appendix). Many efficient algorithms exist for solving 
eigenvalue equations.6 

   The Hessian and Energy Minimization  The matrix of force constants is the matrix of the 
second derivatives of the potential energy. This matrix is also called the Hessian. The Hessian 
also plays a central role in energy minimization techniques. The equations in Section 4: “Energy 
Minimization” apply to one-dimensional systems. For molecules, we must find the x, y, z 
coordinates of each atom, for a total of 3N coordinates. To minimize the energy for these 3N 
coordinates, the equations in Section 4 are actually written in terms of the Hessian, instead of a 
single force constant or the second derivative of the energy for the x-coordinate alone. The use of 
the Hessian is necessary to minimize the energy of all the atoms in the molecule. 
 
 
Numerical Example for Carbon Dioxide 
   The CO2 example will provide some insight for understanding Eq 21. First, we need to discuss 
units. The fundamental vibration frequency for a harmonic oscillator is 

  νo  = 
1
2π 

k
m     or    4π2ν2 = 

k
m       (22) 
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with k in N m-1 an m in kg molecule-1. Normally, vibrational spectra are plotted verses 
wavenumber, instead of frequency. To convert to wavenumbers, ν~ : 

   ν~ = 
1
λ      or ν  =  

c
λ  =  cν~       (23) 

If ν~ is in cm-1, c should be given in cm s-1. Using ν~ in cm-1 and m in g mol-1, Eq 22 becomes: 

 
4π2c2ν~2

 1000 g/kg NA
 = 

k
m         (24) 

 

or solving for the frequency squared in wavenumbers gives a convenient conversion factor 

 ν~2 = 
k/m

5.8921x10-5         (25) 

 
   Now for our example. The CO2 stretches are experimentally measured to be 1340 cm-1 for the 
symmetric stretch and 2349 cm-1for the asymmetric stretch, Fig. 2. Lets roughly see if we can 
calculate these values through a normal mode analysis using our simplified one-dimensional 
model. First we will need all the force constants. However, some force constants are related by 
symmetry, since the left and right hand sides of the molecule are the same. 

    By symmetry :  k
11
xx = k

33
xx   k

12
xx = k

23
xx     (26) 

 

The terms that exchange the atom labels are also equivalent, since atom 1 interacting with atom 2 
gives the same result as atom 2 interacting with atom 1. In matrix terms, these corresponding off-
diagonal terms are equivalent for a symmetric matrix. 

    Symmetric matrix: k
12
xx = k

21
xx   k

23
xx = k

32
xx     (27) 

 

These equivalences leave four force constants that we need to guess. First focus on atom 1. By 
trial an error, a good guess for 

  k
11
xx = 1600 N m-1        (28) 

 

This force constant gives the restoring force as atom 1 is moved. The resorting force, F = -kx, 
will be negative, pulling the atom back to its equilibrium position. Another way to state this is if 
atom 1 is moved forward to shorten the bond length then atom 1 will try to move back to keep 
the bond length constant. A reasonable guess for 

 k
12
xx = -k

11
xx          (29) 

 

Here the 12-force constant is negative, and the restoring force, F = -kx, is positive. This positive 
force results because as you move atom 1’s neighbor, atom 1 will try to follow along in the same 
direction to keep the bond length constant. The absolute value of the two force constants is the 
same since moving either atom 1 or atom 2 has the same effect on the bond length and, therefore, 
the force on atom 1. Now focus on atom 2. Lets guess that it is twice as hard to move atom 2 as it 
is to move atom 1, since moving atom 2 effects two bonds: 

 k
22
xx = 2 k

11
xx = 3200 N m-1       (30) 

 

Finally, we will assume that 

  k
13
xx = 0.          (31) 
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We assume that atom 3 doesn’t affect atom 1 significantly because the two atoms aren’t directly 
bonded. Substituting Eqs 26-31 into Eq 21 gives the mass weighted force constant matrix. The 
row and columns correspond to the three different atoms, O1, C2, and O3, respectively. 
 

     O1  C2        O3 

O1

C2

O3

  -









1600
16 16

-
1600
16 12

 0

-
1600
12 16

3200
12 12

-
1600
12 16

 0 -
1600
16 12

1600
16 16

 = 









-100 115.47  0

115.47 -266.67 115.47

 0 115.47 -100

        (30) 

 

The “eigen” Web applet is available to solve the eigenvalue problem.7 Computer algebra 
programs like Maple and Mathematica are also handy for solving eigenvalue problems. The 
output of the “eigen” applet is shown below. The eigenvalues are listed with “E=.” The normal 
mode frequencies are easily calculated using the units conversion factor from Eq 25. 
 
Eigenvector 1: E=-0.000976903 ≈ 0 
0.603024 
0.522229 
0.603024   
Eigenvector 2: E=-100 
-0.707107 
0 
0.707107   
Eigenvector 3: E=-366.669 
-0.369272 
0.852805 
-0.369272 

 
 
 
Symmetric stretch: 

ν~ = 
100

5.892x10-5  = 1303 cm –1 

 

Asymmetric stretch: 

ν~ = 
366.67

5.892x10-5  = 2495 cm –1 

 

(for about 5% errors) 
 
   The three numbers below each eigenvalue are the normal coordinates. For example, the normal 
coordinates for the second eigenvector show atom 1 (-0.707) moving in the opposite direction as 
atom 3 (0.707), while atom 2 remains stationary (0). For the CO2 example we have motion only 
in the x-direction, so there are only three coordinates listed, one for each atom. In general to 
display the motion of the atoms during the vibration, the atom coordinates are calculated for 
atom i as: 

 Xi = Xi,eq + 
x1
~

mi
 q Yi = Yi,eq + 

y1
~

mi
 q Zi = Zi,eq + 

z1
~

mi
 q  (33) 

where q = sin(2πνt). For example, for the asymmetric stretch for CO2 for the first O atom, 

 X1 = X1,eq + 
-0.369

16
 sin(2πνt)       (34) 

   The first eigenvalue is zero, because it corresponds to the motion of the center of mass of the 
molecule in the x-direction. You can also tell that the first eigenvector is for the motion of the 
molecule as a whole because all the normal coordinates have the same sign, that is all the atoms 
are traveling in the same direction. For fully three-dimensional problems, the first 5 eigenvalues, 
for linear molecules, or 6 eigenvalues, for nonlinear molecules, will correspond to translation and 
rotation. (Spartan, however, doesn’t show you these first eigenvalues, but other programs do.) 
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   You can tell that eigenvalue 2 is for the symmetric stretch, since the normal coordinates for the 
oxygen atoms are opposite to each other (i.e –0.707 and 0.707 respectively) and the carbon atom 
doesn’t move. In the asymmetric stretch, eigenvalue 3, the oxygen atoms move backward while 
the carbon atom moves forward. 
   How well did our simplified model work? The symmetric stretch is a little low and the 
asymmetric stretch is a little too high for a combined error of about 5%. It doesn’t make sense to 
try to get the results to agree any better. We have neglected the bending vibration in our 
treatment, and using a molecular mechanics or molecular orbital program is much more accurate. 
However, you should try changing the force constant guesses a little to see the effects of each 
force constant. If you make a change that is not consistent with the force field in a real molecule, 
then the first eigenvalue will increase. Better sets of guesses give a smaller first eigenvalue. 
 
Normal Mode Analysis and Molecular Mechanics and Molecular Orbital Calculations 
Our simple example of CO2 is not representative of the accuracy available for predicting normal 
mode frequencies. Molecular mechanics and molecular orbital calculations can quite accurately 
predict the frequencies for the vibrations of complex molecules. Results for CO2 are given in 
Table I. If you haven’t gotten to molecular orbital theory yet, suffice it to say that you can 
calculate normal mode frequencies quite accurately.8,9 

 
Table I. Molecular Mechanics and Molecular Orbital Based Normal Mode Analysis for CO2. 
 

Literature MMFF AM1 PM3 
HF/  
6-31G* 

MP2/  
6-311G** pBP/DN* 

 
BP/DN* 

B3LYP/ 
6-311G(d) 

667 538 526 522 744 656 637 638 666 
667 538 526 523 744 656 637 638 666 

1340 912 1480 1408 1518 1344 1323 1319 1377 
2349 1746 2565 2387 2585 2461 2363 2349 2438 

error % 24.1% 15.5% 12.5% 11.6% 2.1% 2.7% 2.5% 1.7% 
 
   The MMFF molecular mechanics calculation poorly represents the accuracy for molecular 
mechanics in general, since the force field parameters aren’t optimized for the unusual C=O 
bonds in CO2. Molecular mechanics calculations are common and very useful for large 
biomolecules. Semi-empirical calculations at the AM1 or PM3 level are more accurate. Hartree-
Foch, HF, calculations are even better, especially when MP2 electron-electron correlations are 
taken into account. Density functional methods like pBP, BP or B3LYP are now the best choice 
for careful analysis. Molecular orbital calculations are indispensable for helping to assign the 
vibration bands in Infrared and Raman spectroscopy. 
 
Anharmonicity 
   The proceeding discussions assume all the vibrations are purely harmonic. Our treatment of 
molecular mechanics force fields showed that anharmonic corrections are often important for real 
molecules. What is the effect of anharmonicity on vibrational spectra and normal mode 
calculations? For weak anharmonicity, vibrational spectra also show overtones and sum and 
difference bands. Overtones are at integer multiples of the fundamental frequency, nν~A. Sum and 
difference bands occur at ν~A+ ν~B , and ν~A- ν~B, respectively. Frequencies from ab initio molecular 
orbital calculations are normally multiplied by 0.9 to correct for anharmonicity. In Table I, if the 
HF/6-31G* values are multiplied by 0.9, the average deviation drops to 1%. Frequencies from 
molecular mechanics are usually too approximate to warrant anharmonicity corrections when 
comparing with vibrational spectra. 
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   For strong anharmonicity, such as occurs for very loose and floppy vibrations, a more refined 
treatment is necessary.10 Such vibrations include bond torsions that have low energy barriers, 
ring vibrations in large ring systems, and vibrations in hydrogen-bonded systems and molecular 
complexes. Unfortunately, such vibrations are often the most interesting, especially in studies of 
proteins and nucleic acids. Treating very flexible, low energy vibrations in biomolecules is an 
active area of current study.11-15 

 
Vibrations and Thermodynamics 
Vibrations increase the Gibbs Free Energy of a substance. Vibrational enthalpy and entropy 
calculations are very useful in drug discovery for assessing the Gibbs Free Energy of binding.16 
Vibrations also play a central role in protein folding and protein flexibility.13-15 The contribution 
of a vibration to the enthalpy and entropy of a substance is given by17 

 Hvib  = 
1
2 NAhνo + 

NAhνo e-hνo/kT

1-e-hνo/kT
        (35) 

 Svib  =-R ln(1–e-hνo/kT ) + 
NAhνo

T
e-hνo/kT

(1-e-hνo/kT)
      (36) 

where NA is Avogadro’s number, νo is the frequency of the normal mode, h is Planck’s constant, 
and k is Boltzmann’s constant = R/NA. The ½ NAhνo term in the enthalpy is the zero-point 
vibrational energy, which is the energy of the vibration at absolute zero temperature, Hvib(0). Eqs 
35 and 36 are summed for each normal mode vibration. Following a normal mode analysis, then, 
it is very easy to calculate the Gibbs Free Energy of a substance. 
   A specific example will help to clarify the importance of normal mode analysis in 
thermodynamic considerations. Consider two different conformations of a molecule, A and B: 
 A →←  B           (37) 
Examples include the trans and gauche isomers of butane or two conformations of a large 
protein. For low frequency vibrations Eq 36 simplifies and the entropy difference reduces to13 

 ∆Svib,conf = R ln 






2πνA1 2πνA2 2πνA3 …

2πνB1 2πνB2 2πνB3 …
       (38) 

 

This entropy difference is called the configurational entropy difference. The numerator is the 
product of the low frequency normal modes for A, and the denominator is the product of the low 
frequency normal modes for B. Therefore, if B has lower frequency modes, the entropy of B will 
be larger and the entropy difference will favor B. In other words, the lower the mode frequencies, 
the more the conformation can rattle around, and the more that conformation is favored. 
   In molecular mechanics the enthalpy of formation of a molecule is given as (see Section 2: 
“Enthalpy of Formation”): 
 

∆fH° = 3/2RT + 3/2RT + RT + bond energy + steric energy + vibrational contributions (41) 
 
Normal mode analysis gives us the tools to calculate the vibrational contributions directly using 
Eq 35. However, as mentioned in Section 2, for MM2 calculations a series of approximations are 
made for Eq 41. The zero point energy is often neglected in classical simulations, leaving the 
temperature dependent contribution from the second term of the vibrational enthalpy, Eq 35. This 
contribution to the enthalpy is plotted as a function of vibrational frequency in Figure 5. 
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Figure 5. Contribution of a vibration to the Enthalpy of formation of a molecule, above the zero 
point energy, at 298K. 
 
 

The contribution of vibrations becomes negligible for frequencies greater than about 500 cm-1. 
Therefore, only low frequency vibrations contribute strongly. Torsional motions around freely 
rotating bonds are often the lowest frequency normal modes in molecules. Other low frequency 
vibrations are often ignored. The vibrational contributions can then be approximated by torsional 
increments for each freely rotating bond, giving the result presented in Section 2: 
 

∆fH° = 3/2RT + 3/2RT + RT + bond energy + steric energy + torsional increments  (42) 
 

Our treatment of normal modes now will allow us to discuss these approximations in detail. 
Examples of low frequency vibrations are bending vibrations and ring vibrations as well as freely 
rotating bond torsions. Clearly for careful calculations more contributions than just the torsional 
increments for freely rotating bonds are necessary. In addition, Eq 42 completely neglects the 
zero point energies. Molecular orbital and molecular mechanics programs readily provide these 
thermodynamic contributions when normal mode analyses are done, so we don’t need to make 
the extreme approximations inherent in Eq 42. 
 
Molecular Dynamics and Normal Mode Analysis 
Molecular dynamics and normal mode analysis are really quite similar. Both include the kinetic 
and potential energy for the molecule. The force field is the same. They both calculate the 
Hessian and then integrate Newton’s Laws of motion. The motions that you see in molecular 
dynamics simulations are in fact the normal modes of the molecule. The fluctuations of the atom 
positions in a molecular dynamics run can be used to extract the normal mode frequencies.14,18 
   The difference between molecular dynamics and normal mode analysis is that the equations of 
motion are integrated numerically in dynamics simulations, but sinusoidal solutions are assumed 
for normal mode analysis. In addition, in molecular dynamics the motions of all the normal 
modes are studied simultaneously, while in normal mode analysis one mode is studied at a time. 
The techniques have their strengths and weaknesses. Eqns 35 and 36 show that the link between 
normal mode analysis and thermodynamics is direct and straightforward. Thermodynamic 
properties can be calculated from dynamics runs, but particular care must be taken to ensure 
adequate statistical sampling (i.e. using long time simulations). On the other hand, molecular 
dynamics more easily handles anharmonicity and explicit solvation. 
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Valence Force Field Solutions 
Normal mode analysis is particularly important in molecular spectroscopy. As a consequence, 
valence force field solutions have been worked out for many small molecule geometries. These 
solutions take a different approach to the problem. The force constants that are used are the force 
constants for individual bonds, rather than the force constants for moving atoms, e.g. Eq 9. 
Focussing on the bond force constants more closely corresponds to our “chemical intuition.” 
Another advantage of valence force field calculations is that algebraic solutions can be written. 
For example, for a symmetric triatomic molecule, where m1 = m3, the internal coordinates are 
defined as 
 q1 = r12 – ro          (43) 
 q2 = r23 – ro 
 δ = θ – θo 
The q’s are bond stretching terms and δ is the bond bending term; r12 is the distance between 
atoms 1 and 2, ro is the equilibrium bond length, θ is the bond angle, and θo is the equilibrium 
bond angle. The potential energy is chosen as: 

V = 
1
2 k1 q1

2 + 
1
2 k1 q2

2 + kδ δ2         (44) 

The k1 force constant is for stretching the 1-2 or 2-3 bond. For CO2 this is the C=O stretch. The 
force constant for bond bending is kδ. The Hessian second derivatives can be obtained by taking 
explicit derivatives of Eq 44. For this potential energy form the normal mode frequencies are 
given by3,4 

4π2νasym
2 = 









1 + 
2m1

m2
 sin2 

θo

2  
k1

m1
         (45) 

4π2 (νsym
2 + νbnd

2) = 








1 + 
2m1

m2
 cos2 

θo

2  
k1

m1
  +  

2
m1

 








1 + 
2m1

m2
 sin2 

θo

2  
kδ
ro

2     (46) 

16π4 (νsym
2 νbnd

2) = 2 






1 + 

2m1

m2
 

k1

m1
2 

kδ
ro

2        (47) 

 

Eqs 46 and 47 show that the frequency of the symmetric stretch depends on the bending force 
constant. As mentioned above, our example for one-dimensional CO2 didn’t include this effect. 
   The disadvantage of algebraic solutions is that they depend critically on the details of the 
potential energy function, e.g. Eq 44. If a stretch-bend interaction or Van der Waals terms are 
included, as in many molecular mechanics force fields, then Eqs 45-47 are no longer valid. In the 
early decades of vibrational spectroscopy, it was hoped that solutions to the normal mode 
problem could be used to determine the force constants for individual bonds, as in Eq 44. 
However, the dependence of the force constants on such over-simplified potential energy 
functions causes large errors. The attempt to determine bond force constants directly from spectra 
has therefore been abandoned. Equations such as 45-47 can still be useful in building our 
intuition about bond strengths, however the derived force constants must be treated as very 
approximate and can sometimes be misleading. 
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Appendix 
We wish to show more clearly the relationship between Eqs 17-19 and the normal coordinates, 
for the curious. First note that substituting Eq 5 into Eq 7 gives: 
 -4π2ν2 m A sin(2πνt) = -k A sin(2πνt)     (48) 
Dividing both sides by the sin gives 
 -4π2ν2 m A = -k A        (49) 
In other words, the equation applies to the time dependence of the vibration and also to the 
amplitude of the vibration separately. Therefore Eqs 12-14 and 17-19 allow us to solve for the 
amplitudes of the vibrations, where xi, yi, zi can be read as the amplitudes of the waves in the x, y, 
and z directions for atom i. Similarly, xi

~
 , yi

~
 , zi

~
  can be considered to be the corresponding mass 

weighted amplitudes. The time dependent values are then: 

 xi
~

(t) = xi
~ sin(2πνt) yi

~
(t) = yi

~ sin(2πνt) zi
~

(t) =zi
~ sin(2πνt)  (50) 

 

Dropping the “(t)” for convenience and converting back into non-mass weighted coordinates 
gives: 

 xi = 
xi
~

mi
 sin(2πνt) yi =  

yi
~

mi
 sin(2πνt) zi = 

zi
~

mi
 sin(2πνt)  (51) 

Converting from extensions into final coordinates using Eq 8 gives Eq 33. 

   Now you may have noted that Eqs 17-19 involve four unknowns (ν, xi
~

 , yi
~

 , and  zi
~

 ) but only 
three equations. So to obtain unique solutions, some more information is necessary. We must add 
the requirement that the center of mass can’t move: 
 m1x1 + m2x2 + m3x3 = 0       (52) 
or equivalently in mass weighted coordinates: 

 m1x1
~

  + m2x2
~

  + m3x3
~

  = 0       (53) 
As we solve for each successive normal mode we also need to ensure that the vibrations don’t 
interact. Mathematically this requires that the normal modes are orthogonal. For each pair of 
normal modes A and B, with normal coordinates xiA

~
 and xiB

~
 , respectively: 

 x1A
~

 x1B
~

 + x2A
~

 x2B
~

  + x3A
~

 x3B
~

  = 0      (54) 
Taken together, Eqs 17-19 and Eq 53 and 54 provide the unique set of normal modes satisfying 
the desired characteristics set out in the introduction. Solving these equations as a linear set of 
simultaneous equations is difficult. Luckily, solving the problem as an eigenvalue-eigenvector 
equation using Eq 21 automatically satisfies the requirement for orthogonality. 
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Section 10 
Partial Atomic Charges 

 
   No issue in molecular mechanics is more problematic or contentious than the determination of 
partial atomic charges. Atomic charges enter the force field through the Coulomb potential (see 
Section 1 Eq. 9) 
 

  Eqq,ij   =   
k  Qi Qj

 4πε rij
         1 

 

Partial atomic charges also are critical in continuum electrostatic solvation treatments. Partial 
atomic charges assigned by different methods and force fields vary widely. Most force fields 
assign charges based on tabular values. Molecular orbital treatments calculate partial atomic 
charges using several different charge models. To appreciate the problem, Table 1 lists the 
charges assigned by force fields or calculated by molecular orbital methods for the chlorines in 
1,1,1-trichloroethane. Chemical intuition would argue that the Cl partial charges should be rather 
negative. The table shows that even the sign of the partial charge on Cl, a very electronegative 
atom, is in dispute. 
 
Table 1. Partial atomic charge on Cl in 1,1,1-trichloroethane. The force field based charges are 
derived from MOE, the semi-empirical charges are from MOPAC, the ab initio charges are from 
Spartan, and the DFT and AMBER charges are from Gaussian. 
 

Level Method Phase Cl Charge 
MMFF94 Tabular, empirical gas -0.290 
CHARMM2.2 Tabular, empirical aq -0.153 
OPLS Tabular, empirical aq -0.154 
AMBER (6-31G(d)) ESP(Merz-Kollman/Singh) gas   0.016 
AM1 Mulliken gas -0.049 
PM3 Mulliken gas   0.014 
PM3-ESP ESP gas -0.09 
3-21G(*) Mulliken gas   0.06 
3-21G(*)-ESP ESP gas -0.14 
6-31G* Mulliken gas   0.03 
6-31G*-ESP ESP gas -0.14 
DFT (B3LYP/6-31G(d)) ESP gas -0.029 
Gasteiger, PEOE Empirical gas -0.084 
 
 
So what's the problem? Why are partial charges so hard to calculate? The problem is that while 
partial atomic charges are very intuitive, they don't really exist. Partial charges are simply models 
of the true electrostatic potential energy in molecules. The partial charge is an effective charge 
placed on the nucleus of each atom that approximates the electrostatic potential around the 
molecule. In real molecules the electrostatic potential energy is determined by the localized 
positive charges on the nuclei and the very delocalized negative charge of the electrons as they 
occupy their molecular orbitals. Therefore, partial charges cannot be determined experimentally. 
There is no model possible that uniquely determines the best set of partial charges1. 
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Molecular Orbital Partial Charge Methods 
   There are two general ways to calculate partial charges from molecular orbital calculations, 
population analysis and electrostatic potential fit (ESP) calculations. The Mulliken procedure is 
the most common population analysis technique. In population analysis, the electrons in each 
molecular orbital are partitioned to each atom based on the probability that the electron is in an 
orbital on that atom. At the end of the calculation the fractional occupation for each molecular 
orbital is summed to get a total atomic electron population for each atom. As can be seen from 
Table 1, Mulliken population analysis can give results that are "unintuitive." That is, since there 
is no unique method for calculating partial charge, we can't say that the Mullikin values are 
wrong, we can simply state that in some circumstances the Mulliken values don't look like they 
will be useful. As an alternative, the careful analysis of electrostatic interactions can be used. 
   In molecular orbital calculations, the electrostatic potential field of a molecule is determined by 
moving a positive test charge around the molecule and calculating the potential energy of 
interaction based on the molecular orbitals. Electrostatic potential fits assume that the real 
electrostatic field of the molecule can be modeled by partial charges placed on each nucleus. The 
fitting procedure uses a least squares approach to adjust the partial charges to get the best 
agreement with the molecular orbital-based electrostatic potential field. ESP calculations usually 
give results that are in agreement with chemical intuition, Table 1. 
   Unlike other force fields, AMBER was designed to use explicit molecular orbital calculations 
to derive charges instead of tabular values.2 The charges in AMBER are to be calculated for each 
specific problem at the HF 6-31G* level using a modified ESP procedure (In Gaussian 
Pop=MK). However, the results in Table 1 show that sometimes the modified ESP procedure 
used for AMBER charges can give "unintuitive" results, similar to Mulliken population analysis. 
AMBER has been very successful for studies on proteins. This ESP based approach is awkward 
to implement in a general-purpose program because it requires a preliminary molecular orbital 
calculation. General-purpose programs get around this problem by supplying a table of charges. 
MOE uses PEOE charges for AMBER by default. 
 
Partial Equalization of Orbital Electronegativity ( PEOE) 
   The calculation of ESP based partial charges is very time intensive. Many authors have 
developed empirical procedures that seek to reproduce molecular orbital based charges but in a 
much shorter period of time. In addition, like ESP calculations, a measure of partial charge that is 
not entangled in the details of a specific force field is also desirable. The most popular of these 
techniques is called Partial Equalization of Orbital Electronegativity (PEOE) or the Gasteiger 
method.3 One of the important failings of any tabular based approach is that the assigned charges 
will not be sensitive to the molecular environment of the atoms in a given functional group. The 
PEOE method was designed to take the molecular environment into account by allowing atoms 
many bonds apart to influence each other. PEOE charges are very popular and are widely used as 
QSAR descriptors. 
   In General Chemistry, the electronegativity of an atom is taken as fixed. However, shouldn't the 
electronegativity, the "hungriness of an atom for electrons", vary as electron density is donated to 
or withdrawn from an atom in polar covalent bonds? Shouldn't electronegativity also depend on 
the hybridization of the atom? The answer to both of these questions is yes. The basic model in 
PEOE is that the electronegativity of an atom i for valance v is charge dependent: 
 

 χiv(q) = aiv + biv Q + civ Q
2       2 
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where aiv is the electronegativity of the neutral atom, while biv and civ are fit coefficients to 
reproduce the experimental values of the electronegativity for positive ions (Q = +1) and negative 
ions (Q = -1). For example, the electronegativity for an sp3 hybridized carbon is: 
 

 χC(sp3) = 7.98 + 9.18 Q + 1.88 Q2     3 
and for an sp2 carbon: 
 χC(sp2) = 8.79 + 9.32 Q + 1.51 Q2     4 
 

In other words a carbon with a positive partial charge is more electronegative than a neutral 
carbon. Also sp2 hybridized carbons are more electronegative than sp3. The units of 
electronegativity in Eqs. 3 and 4 are in kcal/mol and are not scaled to match the Pauling scale of 
4 for fluorine. 
   The tug-of-war for electrons between atoms in polar covalent bonds will tend to equalize the 
electronegativity of the two interacting atoms. For example, in a C=O bond, the O will withdraw 
electron density from the C. A partial positive charge will develop on the C and a negative charge 
on the O. The positive charge on the C will increase the electronegativity of the C making it 
harder for the O atom to withdraw more electron density, while the negative charge on the O will 
decrease its electronegativity making the O less capable of attracting more electron density. At 
first it was expected that the final charges would equalize the electronegativity on the two atoms. 
In other words both atoms would end up with the same electronegativity so there would be no 
impetus for further transfer of electrons. However, it was found that this complete equalization 
overestimates the charges. Complete equalization of electronegativity overlooks the parallel 
changes in the size of the atomic orbitals and their overlap. 
   The key to the PEOE approach is to calculate in an iterative way the final charge on each atom 
based on the partial equalization of electronegativity. The method is designed to correlate with 
experimental measurements that depend on charge and Mulliken population analysis. In the first 
iteration the charge transferred between two atoms i and j is 

 q =  
χi - χj

χ+
j

 





1

2       5 

where we assume that i is more electronegative than j and χ+
j is the electronegativity of the 

positive ion of j. The factor of ½ is called the damping factor, which prevents the total 
equalization. The electronegativities of the atoms are then recalculated with the new charge. In 
the second iteration the additional charge transferred is calculated from 

 q =  
χi - χj

χ+
j

 





1

2
2
       5 

This time the damping factor is increased to ¼ dampen the transfer of electrons even more. This 
process is continued for five total iterations, each time decreasing the damping factor by another 
factor of two. For iteration α the additional charge transferred is calculated as 

 q =  
χi - χj

χ+
j

 





1

2
α

       6 

This procedure is done at each iteration for all atoms bonded to the atom of interest. Each 
iteration brings in the influence of all atoms one bond further away. So after five iterations atoms 
five bonds apart have an influence on each other. The principle advantage of the PEOE procedure 
is this ability to more fully take into account the bonding environment of an atom. Another 
important advantage is speed. PEOE charges correlate well with chemical intuition, see Table 1 
and Figure 1 for examples. PEOE charges are a big improvement over Mulliken based values. 
However, PEOE values are smaller than ESP values and the charges used in force fields like 
CHARMm and OPLS that are designed to be used for aqueous simulations (see below). 
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Figure 1. Partial charges for ethanol assigned by MMFF, HF 6-31G*-ESP, CHARMm, and 
PEOE. The methylene H's are equivalent 
 
 
Aqueous Based Charges for Biomolecular Simulation 
   Population analysis and ESP based methods don't take intermolecular-interaction energies into 
account.2 So not surprisingly, the Mulliken and ESP approaches fail in reproducing solvation 
energetics and interaction energies. Several newer force fields take a completely empirical 
approach based on experimental measurements of solvation energetics and careful molecular 
orbital (HF 6-31G* level) calculations on intermolecular interaction energies. CHARMm and 
OPLS force fields are examples. CHARMm and OPLS are parameterized to be useful for 
inclusion of solvation energetics in aqueous systems. The effect of aqueous solvation is to 
stabilize partial charges through charge compensation in the bulk of the solvent (see Section 8). 
Therefore, it is not surprising that CHARMm and OPLS based charges tend to be larger than gas 
phase methods. These charges, however, are not as useful for gas phase or nonaqueous solvents. 
These force fields are tailored to proteins and nucleic acids and are not as good at the varied 
functionality found in small organic molecules. For small organics MMFF excels. 
   The charges used in MMFF are also completely empirical and are essentially tabular in style, 
which once again lacks flexibility for considering through-bond environment effects.4 The 
MMFF charges are also not optimized using solvation energetics, and so are essentially gas 
phase. 
 
 
What's a modeler to do? 
 
   OK, why is this important? Historically the first molecular mechanics calculations on proteins 
used partial charges calculated by Del Re based on Mulliken population analysis.5,6 These 
charges were tabulated by Del Re and widely used in a variety of programs. The charges used by 
some modern force fields are closely related to the original Del Re values, at least in spirit. These 
force fields do a good job of predicting molecular structure. However, the partial charges are not 
the best values for studying molecular recognition or for solvation energetics. So why not use 
better partial charges within these force fields? All of the parameters are interdependent in a 
force field. So changing the partial charge assignments will also change the optimal values for 
the other parameters in the force field. With altered charges, the force field may not reproduce 
experimental geometries well. 
   AMBER uses a better charge model, but requires an initial long molecular orbital calculation. 
Newer force fields like CHARMm and OPLS are really geared to aqueous simulations of 
proteins. What do you do about gas phase or nonaqueous solvents? 
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   People will continue to argue about the best approach for years to come. Some practitioners 
argue that ESP or PEOE based charges should always be used in molecular mechanics and 
dynamics. On the other hand, Halgen, the author of MMFF, cautions that using PEOE charges 
with the MMFF force field will tend to underestimate intermolecular interactions and in general 
PEOE charges don't work well for the MMFF force field5. In general it is probably best to stick 
with the native charge assignments when doing structure studies or explicit solvation studies. 
However, it is probably advisable to use ESP charges for continuum dielectric solvation 
treatments. Donald Truhlar's recent advances in continuum solvation in the molecular orbital 
context are a case in point. The major differences in the various levels of theory for continuum 
dielectric calculations, e.g. SM5.4 verses SM3, is in the development of better partial charge 
models. PEOE will continue to be an important tool for QSAR studies and has the advantage of 
being based on an appealing intuitive model. 
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