Thomas W. Shattuck
Department of Chemistry
Colby College
Waterville, Maine 04901



Colby College Molecular Mechanics Tutorial
Introduction
September 2008

Thomas W. Shattuck
Department of Chemistry
Colby College
Waterville, Maine 04901

Please, feel free to use this tutorial in any way wish ,
provided that you acknowledge the source
and you notify us of your usage.
Please notify us by e-mail at twshattu@colby.edu
or at the above address.
This material is supplied as is, with no guaramtieeorrectness.
If you find any errors, please send us a note.



Table of Contents

Introduction to Molecular Mechanics
Section 1: Steric Energy
Section 2: Enthalpy of Formation
Section 3: Comparing Steric Energies
Section 4: Energy Minimization
Section 5: Molecular Dynamics
Section 6: Distance Geometry and 2D to 3D Modelv@osion
Section 7: Free Energy Perturbation Theory, FEP
Section 8: Continuum Solvation Electrostatics
Section 9: Normal Mode Analysis
Section 10: Partial Atomic Charges

An accompanying manual with exercises specific ©BVs available at:

http://www.colby.edu/chemistry/CompChem/MOEtutof.pd




Introduction to Molecular Mechanics
Section 1

Summary The goal of molecular mechanics is to predietdbtailed structure and physical
properties of molecules. Examples of physical prigethat can be calculated include
enthalpies of formation, entropies, dipole momeatsl strain energies. Molecular mechanics
calculates the energy of a molecule and then adfbstenergy through changes in bond lengths
and angles to obtain the minimum energy structure.

Steric Energy
A molecule can possess different kinds of enstgh as bond and thermal energy. Molecular

mechanics calculates the steric energy of a maded¢hie energy due to the geometry or
conformation of a molecule. Energy is minimizedature, and the conformation of a molecule
that is favored is the lowest energy conformatkbmowledge of the conformation of a molecule
is important because the structure of a molecutndias a great effect on its reactivity. The
effect of structure on reactivity is important farge molecules like proteins. Studies of the
conformation of proteins are difficult and therefanteresting, because their size makes many
different conformations possible.

Molecular mechanics assumes the steric energynaflecule to arise from a few, specific
interactions within a molecule. These interactimtéude the stretching or compressing of bonds
beyond their equilibrium lengths and angles, toral@ffects of twisting about single bonds, the
Van der Waals attractions or repulsions of atoras ¢tbme close together, and the electrostatic
interactions between partial charges in a moleguéeto polar bonds. To quantify the
contribution of each, these interactions can bealaablby a potential function that gives the
energy of the interaction as a function of distamacgyle, or chardé. The total steric energy of a
molecule can be written as a sum of the energiéiseonteractions:

Esteric energy= Estr + Evend* Estr-bend* Eoop + Bor + BEvdaw + Eqq 1)

The bond stretching, bending, stretch-bend, optarie, and torsion interactions are called
bonded interactions because the atoms involved beudirectly bonded or bonded to a common
atom. The Van der Waals and electrostatic (qqyactens are between non-bonded atoms.

Bonded Interactions
Eqr represents the energy required to stretch or cessp bond between two atoms, Figure 1.
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A bond can be thought of as a spring having its equilibrium length, ¢, and the energy
required to stretch or compress it can be appraediby the Hookian potential for an ideal
spring:

Estr= 1/2 ks jj (1ij - To )2 (2

where k jj is the stretching force constant for the bondgnsl the distance between the two
atoms, Figure 1.

Epend is the energy required to bend a bond from itsliégum angle,6,. Again this system can
be modeled by a spring, and the energy is givethdydookian potential with respect to angle:

Epend= 1/2 kyjjk ( Bijk - 6o )2 3)

where k jik is the bending force constant dg is the instantaneous bond angle (Figure 2).

Figure 2. Bond Bending

Estr-bend IS the stretch-bend interaction energy that taksaccount the observation that when a

bond is bent, the two associated bond lengthsaseréFigure 3). The potential function that can
model this interaction is:

Estr-bend= 1/2 kb jjk ( 1ij - o) Bijk - 60) 4)

where ky, jik is the stretch-bend force constant for the bortaiéen atoms i and j with the bend
between atoms 1, j, and k.

Figure 3. Stretch-Bend Interaction

Eoop is the energy required to deform a planar grougtarins from its equilibrium angley,
usually equal to zerdThis force field term is useful for $pybridized atoms such as doubly
bonded carbon atoms, and some small ring systeganAhis system can be modeled by a
spring, and the energy is given by the Hookian mitaewith respect to planar angle:



Eoop= 1/2 ky jjki ( wiji - 0 )2 (5)

where k jjki is the bending force constant angk is the instantaneous bond angle (Figure 4).

Figure 4. Out of Plane Bending

The out of plane term is also called the impropesibn in some force fields. The oop term is
called the improper torsion, because like a diHdadraion (see below) the term depends on four
atoms, but the atoms are numbered in a differetgroforce fields differ greatly in their use of
oop terms. Most force fields use oop terms forcadonyl carbon and the amide nitrogen in
peptide bonds, which are planar (Figure 5).

Figure 5. Peptide Bond is Planar.

Torsional Interactions: Egoy is the energy of torsion needed to rotate abont®oTorsional
energies are usually important only for single l®hdcause double and triple bonds are too rigid
to permit rotation. Torsional interactions are medéy the potential:

Etor = 1/2 Kor,1 (1 + c0Sp) +1/2 kor,2 (1 + oS 2p) + 1/2 kor 3 (1 + cos 3p)  (6)

The anglapis the dihedral angle about the bond. The constagits, kior,2 and kor 3 are the
torsional constants for one-fold, two-fold and #ifeld rotational barriers, respectively. The



three-fold term, that is the term ip,3s important for sp hybridized systems ( Figure 6a and b ).
The two-fold term, in @ is needed for example in F-C-C-F and Isgbridized systems, such as
C-C-C=0 and vinyl alcohots The one-fold term in juspis useful for alcohols with the C-C-O-
H torsion, carbonyl torsions like C-C-C(carbonyl)dhd the central bond in molecules such as
butane that have C-C-C-C frameworks (Figure 6c).
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Figure 6. Torsional Interactions, (a) dihedral ariglsPsystems. (b) three-fold gBrotational
energy barrier in ethane. (c) butane, which alsoeheontribution of a one folg, barrier.

The origin of the torsional interaction is not wetiderstood. Torsion energies are rationalized
by some authors as a repulsion between the borgtegps attached to a central, rotating bond (
i.e., C-C-C-C frameworks). Torsion terms were ovadly used as a fudge factor to correct for the
other energy terms when they did not accuratelgliptsteric energies for bond twisting. For
example, the interactions of the methyl groupstaydiogens on the "front" and "back" carbons
in butane were thought to be Van der Waals in eafitigure 7). However, the Van der Waals
function alone gives an inaccurate value for teeisenergy.

Bonded Interactions Summary: Therefore, when intramolecular interactions stietompress,
or bend a bond from its equilibrium length and anghe bonds resist these changes with an
energy given by the above equations summed ovbepalls. When the bonds cannot relax back
to their equilibrium positions, this energy raitles steric energy of the entire molecule.

Non-bonded Interactions

Van der Waals interactions, which are responsible for the liquefaction of rumiar gases like ©
and N, also govern the energy of interaction of non-ezhdtoms within a molecule. These
interactions contribute to the steric interactionmolecules and are often the most important
factors in determining the overall molecular conation (shape). Such interactions are
extremely important in determining the three-dimenal structure of many biomolecules,
especially proteins.

A plot of the Van der Waals energy as a functbdistance between two hydrogen atoms is
shown in Figure 7. When two atoms are far apargtaaction is felt. When two atoms are very
close together, a strong repulsion is present.odigh both attractive and repulsive forces exist,



the repulsions are often the most important foewheining the shapes of molecules. A measure
of the size of an atom is its Van der Waals radiie distance that gives the lowest, most
favorable energy of interaction between two atosrthé sum of their Van der Waals radii. The
lowest point on the curve in Figure 7 is this polnteractions of two nuclei separated by more
than the minimum energy distance are governeddgtinactive forces between the atoms. At

distances smaller than the minimum energy distalepelsions dominate the interaction. The
formula for the Van der Waals energy is:

_ A B
EVAW,ij G +rij12 "

where A and B are constants dependent upon thétiderof the two atoms involved anglis
the distance, in Angstroms, separating the twoeiu€his equation is also called the Lennard-
Jones potential. Since, by definition, lower endsgyore favorable, the - A'part is the

attractive part and the + BApart is the repulsive part of the interaction. o hydrogen
atoms in a molecule:
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Figure 7: Van der Waals interactions between twardyen atoms in a molecule, such
as O or CHz-CH3

An equivalent and commonly used form of the Lenrkodes potential is

oo 3]

Wheree is the minimum energy angdis the sum of the Van der Waals radii of the twaes,

ri+ r;. Comparing Eq 7 and 8 gives A =2 g and B = 52 ¢. For two hydrogens, as in Figuree?,

= 0.195 kcal/mol and,= 2.376 A. When looking for close contacts betwatms it is best to
use the hard-core Van der Waals radayg, . This distance is the point where the Van derg/aa
potential is zero. When two atoms are closer tharstim of theioyc values then strong
repulsions are present. For an atogs = 2V°r,.



Electrostatic Interactions: If bonds in the molecule are polar, partial elestatic charges will
reside on the atoms. The electrostatic interac@wasepresented with a Coulombic potential
function:
S _coQq o
A T 4, i )

The Q and Q are the partial atomic charges for atoms i arepagated by a distancg ; is the
relative dielectric constant. For gas phase cdiause is normally set tol. Larger values of

& are used to approximate the dielectric effect tdrivening solute or solvent atoms in solution.
cis a units conversion constant; for kcal/mot4172.8 kcal mét A. Like charges raise the
steric energy, while opposite charges lower thegndhe Del Re method is often used for
estimating partial charges. The Coulomb potentisbfunit positive and negative charge is
shown in Figure 8a and the Coulomb potential ferligdrogens in D, is shown in Figure 8b.
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Figure 8. (a) Coulomb attraction of a positive and a negativarge. (b) Coulomb repulsion of
the two hydrogens in #D,, with the charge on each hydrogen as@.,= 0.210.

Nonbonded Summary: The Van der Waals and electrostatic potentiattions represent the
various non-bonded interactions that can occur éetwwo atoms i and j. A full force field
determines the steric energy by summing these paleover all pairs of atoms in the molecule.

The bond stretching, bond bending, stretch-beatipf-plane, torsion, Van der Waals, and
electrostatic interactions are said to make up@efeld. Each interaction causes a steric force
that the molecule must adjust to in finding its é&stvenergy conformation.

Empirical Force Fields

All the potential functions above involve some ®aonstant or interaction constant.
Theoretically, these constants should be availsibfa quantum mechanical calculations. In
practice, however, it is necessary to derive therpiecally. That is, the constants are adjusted
so that the detailed geometry is properly preditbe@ number of well known compounds.
These constants are then used to calculate tredstes of new compounds. The accuracy of
these constants is critical to molecular mecharadsulations. Unfortunately, no single best set
of force constants is available because of thersiityeof types of compounds. For example, the
MM2 force field works best on hydrocarbons becausst of the known compounds used in
deriving the force field were hydrocarbonsIM2 is less accurate for oxygen-containing
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compounds and even less reliable for nitrogen atfdrsspecies. This is because there aren't as
many hetero-atom containing compounds in the lagreet for MM2 and hydrocarbons are a
more homogeneous class of compounds than substaithdsetero-atoms. However, the MM2
force field is one of the best available and thestwadely accepted force field for use with
organic compounds. MM2 was specifically parameegtito reproduce experimental enthalpies
of formation?

It is important to realize that the force fieldhist absolute, in that not all the interactionselist
in Equation 1 may be necessary to accurately préuicsteric energy of a molecule. On the other
hand, many force fields use additional terms. Kkargle, MM2 adds terms to the bonded
interactions to better approximate the real posfiinction of a chemical bond. These additional
terms take into account anharmonicity, which issult of the fact that given enough vibrational
energy, bonds will break. Purely quadratic potésti@ve steep "walls" that prevent bond
dissociation (Figure 9a). Cubic terms are adddeteation 2 to adjust for this:

Estr = 1/2 ks jj (rj — 10)2 — 1/2 kg jj Cs (1 — I)3 (10)

whereCs is the cubic stretch constant. For example, 16(s13)-C(sp?) bond the cubic stretch
constant is 2.00 A see Figure 9b:

Estr = 317 kcal/mol/& (r — 1.532 A% — 317 kcal/mol/& [2.00 AY] (r — 1.532 A$ (11)

The addition of the cubic term makes the smallrtipo steeper or more repulsive. This is
realistic for real bonds. At larger r the curvéeiss steep, as desired. For r very large (r > BA) t
energy decreases, which is unphysical; the curealdrapproach a constant value. Even though
the large r behavior is incorrect, the bond lengtbtompounds remains less than this value, so
this region is unimportant under normal conditidBsme force fields add a quartic term,

(rj — )4, to help improve the large r behavior.
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Figure 9. (a). Energy for the stretching of a CeRdwith only the (r4)2 harmonic term., Eq. 2
(b), Comparison of the harmonic term with Eq. 8jaliincludes the (rg)3 term for
anharmonicity.
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Force Field Atom Types and Parameters

MM2 is a good example of a molecular mechanicsddield. The force constants will give a
good idea of what typical force constants are [ikee first step in starting a calculation is to
identify the different atom types in the molecutesome programs this must be done manually
by the user. In many programs a routine does tesautomatically. However, automatic atom
type assignments can be incorrect, and the usetdshbeck to make sure the atom types are
assigned properl list of some MM2 atom types is given in Table 1.

Table 1.MM2 Atom types. The typical atom symbol is listatahe radius used in the Van der
Waals force field term and approximate Van der Waadlii for judging close contacts.

Atom Type | atom | Description Type R (A) o, (A)

1 C C(sp) C 1.96¢ 1.7¢

2 C C(sf’) alkene Csp: 2.097 1.87

3 C C(sp) carbonyl C= 1.992 1.77
4 C C(sp) alkyne; C=C=( Cst 2.07i 1.8¢

5 H Attached to C and Si HC 1.485 1.82
6 O C-O-H, C-O-C O 1.77¢ 1.5¢

7 (6] =0 carbony! O= 1.74¢ 1.5€

8 N N(sp) N 2.014 1.79
9 N N(sf’) amide NC=C | 1.89¢ 1.6¢
10 N N(sp) #N 1.94¢ 1.7¢
11 F Fluoride F 1.496 1.33
12 Cl Chloride CL 2.04¢ 1.82
15 S -S- sulfide S 2.18" 1.95
16 S+ >S+, sulfoniurr >S+ 2.33: 2.0¢
17 S >S=0, sulfoxide >SC 2.12¢ 1.9C
18 S >S02, sulfone SO2 1.998 178
20 LP Lone pai LP 1.96¢ 1.7¢
21 H -OH alcohol HO 1.307 1.16
22 C cyclopropane CR3Fk 1.992 1.77
23 H NH amine HN 1.307 1.1€
24 H COOH carboxyl HOCO 1.307 1.16
28 H H on N(sp2); amids HN2 1.307 1.1€
36 H ammonium HN+ 1.497 1.33
37 N -N=; pyridine NPYD 1.820 1.6p
39 N N+(sE%); ammoniumnr N+ 2.25( 2.0C
40 N N(sp); pyrrole NPYL | 1.900 1.64
46 N NOy; nitro, nitrate NO3 1.74C 1.5k
47 O carboxylate OM 2.052 1.8¢

MM2 types up to type 28 are similar to MMFF typesywever imines are type 9, amides
are type 10, terminal S in S=C type 16, and &(®pfour membered rings are type 20 in
MMFF. For MM2 types: http://europa.chem.uga.eduigbér/mm2mm3/mm2_type.html

MM2 uses the Buckingham equation instead ot #renard-Jones equation for the Van der
Waals interaction. The general form of the Buckemghequation for the Van der Waals potential
energy is:

6 a(fToffe _a (&ﬂ (12)

Bvdwij =& {E € a-6 fij
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This potential uses thé attractive part of the Lennard-Jones functionahfoEq. 7. The
exponential part of the Buckingham potential mascthe repulsive part of the Lennard-Jones 6-
12 potential best with am of 14-15. However, MM2 uses a “softer” repulsidrog12.5:

- . 6
EVAW,jj = e{ g 125/t 2.25({—;’) } (13)

The MM2 force field shows that equilibrium boletigths and angles change depending on
hybridization and bonding partners. In Table 2lmsted the bond parameters that MM2 uses in
its force field for a few bond types. These pararseare the starting point for energy
minimizations. Any deviations from these equilibnulistance and angle values will be reflected
in increases in steric energy. These parametedeaneed by finding the "best fit" to
experimental data for a reference set of compouHis.reference set of compounds is often
called the learning set. The learning set experalelata is from electron and x-ray diffraction
studies. (The k’s are for the quadratic terms,glae also cubic and quartic terms included to
account for anharmonicity.) The values in Table€movided to show you typical values for the
various force constants.

Table 2 MM2 force field parameters, bond stretch and bend

Bond b (A) k (kcal/A) | Angle 0, k (kcal/rad)
C-C 1.523 317 C-C-C 109.47| 32.4
C-0 1.407 386 C-C-O 107.5 50.4
Csp*-C 1.497 360 C-Csp-C 117.2 32.4
Csp?-C-C 109.47 | 32.4
C(carbonyl)-C 1.509 317 C-C(carbonyl)-C 116.6( 28.8
C(carbonyl)-C-C 107.80 | 32.4
C=0 1.208 777 C-C=0 122.50| 67.5
H-C 1.113 331 H-C-H 109.40 | 23.0
H-C-C 109.39 | 25.9
H-O 0.942 331 H-O-C 106.90| 57.1

* sp2 hybridized but not conjugated.

A typical stretch-bend interaction constant isvhkie for C-C-C of 8.6 kcallradian A typical
oop force constant is the value for >C=C of 2.1&lkadian For torsional force constants, the
expansion for the C-C-C-C torsion has one, two,tanee fold terms:

Etor=0.051 (1 + co®) - 0.341 (1 + cos @) + 0.166 (1 + cos @) (14)

When the different units of distance and anglecaresidered, these values show that typically
the force constants have relative sizes of:

Stretch >> bend > stretch-bend ~ out-of-planersion

In other words, it is difficult to stretch a borehisier to bend a bond, and very easy to twist a
bond if it is singly bonded.

The peptide bond is particularly important, siftds the linkage between amino acids in
proteins. Figure 8 shows the peptide bond withMIM2 type force constants for a stretch, bend,
and oop bend.



Figure 8. MM2 force field parameters for the anmiteogen in a peptide bond.

MMFF and MM2 The Merck Molecular Force Field, MMFF, is alsseay commonly used

force field*® Example parameters for the MMFF force field areegiin Tables 3 and 4 so that
you can compare the different parameters from oreeffield to another. MMFF uses a 14-7
Van der Waals term instead of the more common lL8rhard-Jones or Buckingham potential.
Overall MMFF has more terms in the force field,lirting cubic and quartic terms in the bond
stretch, and cubic terms in angle bending poteahalgy. Notice that there are large differences
between MM2 and MMFF. The differences show thatsipecific terms in the force field make a
big difference in the overall parameters. Thestedihces also show that parameters are not

13

transferable from one force field to another.

Table 3. SomeMMFF Atom types.

Oop: 1.51 kcal/

Atom Type | atonr | Descriptior Type R (A)

1 C C(sp) C 1.969

2 C C(sf%) alkene Csp: 2.097

3 C C(sf°) carbonyl = 1.997

4 C C(sp) alkyne; C=C=0 Csp 2.077
5 H Attached to C and ¢ HC 1.48¢

6 @) C-O-H, C-0-C @) 1.779
7 0 =0 carbonyl = 1.746
8 N N(sp) N 2.01¢

9 N N(sp) imines N=C 1.894
10 N N(sf°) amide: NC=C | 1.94¢
11 F Fluoride F 1.49¢
12 Cl Chloride CL 2.044
15 S -S- sulfide S 2.18¢
16 S Terminal S=C S=C 2.338
17 S >S=0, sulfoxide >SN 2.12¢
18 S >S02, sulfones and sulfat| SOz 1.99¢
20 C C(sp) in 4-membered ring | CR4R| 1.96P
21 H -OH alcohol HO 1.307
22 C cyclopropane CR3R 1.992

Table 4 MMFF94 force field parameters, bond stretch amddo The MMFF has an additional
cubic and quartic term in the bond stretch for \ttee constants are not shown.
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Bond ro (A) k (kcal/A) | Angle 9, k (kcalrac®)

C-C- 1.50¢ 30€ C-C-C 109.6: 61.2

C-O 1.41¢ 363 C-C-O 108.1: 71.2
Csf2-C-C 109.4¢ 53.C

C(carbonyl-C 1.49: 30z C-C(carbonyl-C 118.0: 82.¢
C(carbonyl-C-C 107.5: 55.¢

C=C 1.22: 932 C-C=C 124.4: 67.5

H-C 1.09: 342 H-C-H 108.8¢ 37.1
H-C-C 110.5¢ 45.¢

H-O 0.972 561 H-O-C 106.5( 57.1

* sp2 hybridized but not conjugated.

Note that even though the MMFF C-gis listed as 1.508 the minimized central C-C bond length
in butane is 1.527 A. This compromise bond lengkes into account the cubic and quartic termsén th
bond stretch term in conjunction with the Van deaidlé replusions for the attached hydrogens. So even
in the case of "unstrained" butane, the central €r€&€ch energy is 0.114 kcal/mol and the finaldon
length is greater thagas set in the force fieldhe minimized central C-C bond in butane using MM2
is 1.531 A showing the same effect, but not theesaragnitude of increase from the force figlttalue

of 1.523A.
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Introduction Section 2
Enthalpy of Formation

The steric energy of a molecule can be used twledécthe enthalpy of formation. First, the
steric energy is calculated from Equation 1. Théord energy calculation is done using
standard tabular values. The bond energy, or ethal the energy needed to make all the
chemical bonds in the molecule starting from tlerents in their standards states. It is
customary to use bond increments rather than thd boergy calculations that you did in
General Chemistry for the bond energy calculatitmwever, the principle is the same. Thermal
energy terms must then be added to account fartesgy of translation and rotation of the
molecule. The energy of translation (x, y, z motdrthe center of mass of the molecule) is
3,RT. The rotational energy of a non-linear moledslalso®,RT (/-,RT for each rotational
axis).

The steric energy calculation in molecular meatgcorresponds to an internal energy
calculation. SincAH=AU+A(PV), PV=nRT for an ideal gas, and we want the mefdhalpy of
formation with n=1, we must also add RT to conwentn internal energy to enthalpy.

We have not yet considered molecular vibratiespgecially internal rotations. In principle,
every vibration, including internal rotations, cobttes to the enthalpy. However, the
contribution of vibrations is difficult to calcukatin practice the contributions are often small so
they can be ignored. However, the internal rotatibthe methyl group is always included; in
fact the effect is automatically included in theadancrement calculation. For careful work extra
terms must also be added for non-methyl free ialawotations. This contribution, which is
called the torsional increment, is estimated a6 Rcal/mol or 1.51 kJ mdifor each internal
rotatior!. For example, butane, GHCHo-CH,-CHs, has one additional internal rotation, other
than the methyl group rotations; so the torsionatement for butane would be 0.36 kcal/mol. In
summary the enthalpy of formation for non-linead@cales is then,

AfH® =3,RT +3LRT + RT + bond energy + steric energy + torsionatéments (1)

This formula also assumes that there is only oneeloergy conformation of the molecule. If
there are several low energy conformations, eacst bmiaccounted for in Equation 1.

Bond Energy
You are familiar with bond energy calculationsth General Chemistry. The energy of a

molecule is assumed to be an additive functiomefenergy of individual bonds (Table I). The
A(H for a reaction is given froiH°(bonds broken)AH®°(bonds formed).

Table I. Bond Enthalpie&H°(A-B) (kJ/mol)

H C O
H 436
C 412 348 —
612 =
O 463 360 — 146 —
743 = 497 =

C (graph) -> C (9)

For example, the enthalpy of formation of acetaydiehis calculated as:

AH°=716.7 kd/mol
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2 C(graph) + 2 bW(g) + 1/2 @ (g) -> CH-CH=0 (g)

# Bonds Broken - # Bonds Formed

2 C(graph) 2 (716.7 kd/mol) 1 C=0 43’kJ/mol

2 H-H 2 (436 kJ/mol) 4 C-H4 (412rkdl)

1/2 O=0 1/2 (497 kJ/mol) 1 C-C 348 kJ/mol

total 2553.9 kJ/mol - total 2739hkadl = -185.1 kJ

The experimental value is -166.19 kJ, so the vdareved from Table | is not very accurate.

The bond energy calculations in molecular meidsaare done slightly differently, using bond
increments. Again the bond energies are assumieg aolditive. The contributions are taken not
only from each bond, but increments are addedddam structures, such as tertiary carbon
linkages. The bond energy calculation for acetatdetirom the MM2 program is given below,
with energies in kcal. MM2 also calculates entrepighich are also listed for your interest.

# Bond or Structure Each Total Tot S contrib
3 C-H ALIPHATIC -3.205 -9.615 38.700

1 C=0 -25.00 -25.00 -2.300

1 C-HALDEHYDE -2.500 -2.500 26.800

1 C-C SP3-SP2C=0 -3.000 -3.000 -0.600

1 ME-CARBONYL -2.000 -2.000

bond energy = -42.115 kcal S° = 62.600Kcal

The bond energy is -42.115 kcal or -176.2 kJ. H@xewaution should be used since these
calculations are designed to be used in conjunetitmsteric energies in a molecular mechanics
calculation and not as general bond energy valugisg Equation 1, with the steric energy
calculated by molecular mechanics gives the figll° = -169.33 kJ/mol, which is a significant
improvement over the bond energy calculation fraabl& | of -185.1 kJ.

References:
1. Pitzer, Kenneth S., Quantum ChemisBEyentice-Hall, New York, NY, 1953, pp 239-243,
Appendix 18, pp 492-500.
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Introduction Section 3

Comparing Steric Energies

You must be careful when comparing steric ersrffiom molecular mechanics calculations.
Strictly speaking you can only compare steric eiesrdirectly for conformational isomers or
geometric isomers that have the same number aed tfoonds. Some examples using MM2

will make this important point clearer.

Example 1: Different number of atoms:

Table 1 gives the MM2 results for pentane, hexand,heptane. First note that each of the
individual force field terms and the total sterieeegy increase on going from pentane to hexane
to heptane. It would be tempting to conclude thatlarger molecules have “more steric
hindrance” from these numbers, but this would leeirect. Rather, the changes are caused by
the fact that you are simply adding more atom$ismumber of terms in the force field are
increasing causing the molecule’s totals to in@edkis conclusion is reinforced by the MM2
sigma strain energy results that show each mold¢oliave no strain energy. This example
shows that you can't directly compare steric erey@or molecules with different numbers of

atoms.

MM2, MMX, and MM3, however, take the moleculaeohanics calculation one step further.
The use of bond enthalpy calculations to calculaeenthalpy of formation for the molecule
adjusts for the new bonds that are formed as tHeaular size increases. Enthalpies of
formation can be compared directly. For example ibnd enthalpy and enthalpy of formation
from MM2 are also shown in Table 1. These restits\scorrectly that the enthalpy of formation
of these molecules decreases with size, even thivegiotal steric energy is increasing. The
enthalpies of formation can, of course, be usethlculate the enthalpies for any reactions using
pentane, hexane, and heptane.

Table 1. MM2 results for linear C5, C6, and C7 togdrbons and branched C5 hydrocarbons.

kcal/mol Pentane | Hexane Heptane 2-Methylbutane D#y#ethylpropane
Bond Stretch 0.2267 0.2968 0.3664 0.3180 0.4038
Bending 0.3797 0.4689 0.5553 0.6512 0.3308
Stretch-bend 0.0731 0.0938 0.1142 0.0969 0.0641
Lennard-Jones| 2.1316 2.5911 3.0517 2.0967 1.4712
Dihedral 0.0116 0.0161 0.0212 0.4649 0

Total Steric 2.8226 3.4667 4.1084 3.6279 2.2699
Bond Enthalpy| -41.50 -47.91 -54.32 -42.93 -45.22
Sigma Strain 0 0 0 1.03 0
Enthalpy of -36.27 -42.04 -47.82 -36.90 -40.55
Formation

The bond enthalpy calculations in MM2 are dosiag tabulated values for bond increments
for each specific bond and chemical environmenrg. t8e enthalpy of formation discussion
earlier in this manual for more information. Thgrsa strain energy calculations in MM2 are
done using similarly tabulated increments for egécific bond and chemical environment, but
in a hypothetical “strainless environment.” Diffeoes in total enthalpy of the values based on
the actual and the strainless bond enthalpiesta/gsigma strain energy.
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Example 2: Same formula different types of bonds:

Table 1 also has the MM2 results for the branchedgnes, 2-methylbutane and 2,2-
dimethylpropane, to compare with linear pentane ddrresponding structures are shown in
Figure 1. Each isomer has the same number of edoohthe same number of C-H and C-C
bonds. Here again, however, comparing steric eeejrectly is dangerous. The higher steric
energy of pentane compared to 2,2-dimethylpropaes dot indicate that linear pentane has
“more steric hindrance.” Rather, both linear peatand 2,2-dimethylpropane show no sigma
strain. Likewise, both branched pentanes have lentalpies of formation than the linear
isomer. Even though all three isomers have the sam#er of C-H and C-C bonds, the C-C
bond energy increases with increased branching.i$ha tertiary C-C bond is more stable than
a secondary, which is more stable than a primary.

Once again, the final enthalpy of

formation calculations adjust for

these bond strength differences and

N are then directly comparable. Does
this mean that the steric energies by
themsleves are useless? No, you
just need to be careful when doing
Figure 1. Pentane geometric ison comparisons.

For example, why does 2-
methylbutane have a higher steric energy thandipeatane? The Lennard-Jones term is actually
lower in energy for the branched isomer, becaudawairable, attractiv&/an der Waals
interactions. Looking at the other force field tefrwe see that the dihedral terms increase the
most. The increase in the branched isomer resolts & gauche interaction. Draw a Newman
projection to show that this is so. This examplevehthat comparing steric energies, and in
particular, comparing the different force fieldrter can be very helpful in understanding the
energetics of the molecule, especially for georoétomers. Remember that, however, it is the
enthalpy of formation of the molecule that deteresiits reactivity and the enthalpy of formation
may or may not follow the same trends as you coempae geometric isomer to another.

An analogy might help. One person may be tétlan another, but the taller person may not be
the better basketball player. It is fair to compidue height of two individuals, but basketball
ability depends on many more things than heightalo

pentane  2-methylbutane 2,2-dimethylpropane

Example 3: Making fair comparisons:

Most biostructure molecular mechanics prograorstdise MM2 or MM3, so that the sigma
strain energy and the enthalpy of formation arecattulated. In addition, MM2 and MM3 have
limited parameter sets, so your compound of interes/ not run with MM2 and MM3, and you
must use a different force field. How can you miiecomparisons if you can’t get the enthalpy
of formation? Often, it is possible to build a refiece structure and then look at differences with
the reference structure as a fair comparison. lUistrhte this point we will look at the strain
energy of five, six and seven membered rings, TabWe will use MM2 results to check our
comparisons, to make sure our reference strucfuoegde a fair comparison. But the utility of
building reference structures is really most usefoén MM2 isn’t available.
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Table 2. MM2 Results for five, six and seven meralédrydrocarbon rings.

kcal/mol Cyclopentane Cyclohexane Cycloheptane
Bond Stretch 0.3264 0.3374 0.4116
Bending 2.1899 0.3652 2.8389
Stretch-bend -0.0976 0.0826 0.2399
Lennard-Jones| 2.6501 3.6100 5.3694
Dihedral 6.3279 2.1556 5.4476
Total Steric 11.4049 6.5510 14.3075
Bond Enthalpy| -32.07 -38.48 -44.90
Sigma Strain 8.12 2.61 9.71
Enthalpy of -18.27 -29.53 -28.19
Formation

(Cyclic-Linear) | 8.58 3.08 10.20
Steric Energy

First note that the total steric energy and thaapy of formation follow completely different
trends. Therefore, the steric energy is a poorigt@dof chemical reactivity. This example is
similar to Example 1, above, in that the molecweswish to compare have increasing numbers
of atoms. However, the strain energy of rings isngportant concept and has helped to guide
organic chemist’s intuition about chemical reatyivor over a century. Of course, MM2
calculates the strain energy, and we get the eedextler cyclohexane< cyclopentane<
cycloheptane. Students are often surprised abther, thinking that the cyclopentane ring is
unusually strained, but this is not so in comparisith cycloheptane.

We can make a fair comparison of the ring steaiergies of these molecules by comparing
each cyclic structure with a linear reference stmec The reference structure is just the cyclic
molecule “opened up.” We then compare this diffeesim energy for the cyclopentane,
cyclohexane, and cycloheptane rings. In Tableli®tisd the differencén steric energy between
the cyclic structure and the linear structure. Ehdifferences mirror the MM2 strain energies
nicely. The_differencevith the linear reference structure is successftihding the strain energy
because the difference between the cyclic andrlifoesn is the breaking of two C-H bonds and
the formation of a new C-C bond for eaafiour cyclic molecules. Using the differences in
energy then makes the comparison fair becauseevadjuisting for the fact that the rings have
an increasing number of atoms. The following chaayy be helpful is seeing why this difference
procedure works:

Incorrect comparison:
Cyclopentane < Cyclohexane < Cycloheptane
CsHio GeHa2 GHus

Total
Change: Chl CH,CH;

Better comparison:
(Cyclopentane - pentane)- (Cyclohexane - hexane)= (Cycloheptane - heptane)
GCsHao GsHio GsH12 CeHaa GHua CiHis
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Using differences with reference structures hadpsancel out the effects of having different
numbers of atoms and bonds. In fact, the differendgéh the references (last row of Table 2) are
each 0.47 kcal/mol larger than the corresponding2Miigma strain energy. So the trend in strain
energy is exactly reproduced. The 0.47 kcal/malltegrom the way in which MM2 tabulates

the expected values of bond energy for “strainddagctures.”

In summary, comparisons of steric energies eaméde using differences with reference
structures. The reference structures should bédmihat the energy term of interest is
highlighted. In this example, the reference wasstroicted from the linear form of the cyclic
molecule to highlight the strain energy. The rafieeestructures should be as similar as possible
in every other way to the compound under study.

Example 4: Different number of atoms, but ask a different question:

Steric energies, as we have seen, usually cablmpared directly when trying to predict
chemical reactivity. We need enthalpies of formafiar reactivity comparisons. However, we
can ask a different question, for which steric gie=r are useful for comparisons. We can ask
which terms in the force field have a big influereethe steric energy of the molecule and how
that influence changes from molecule to moleculather words, by comparing relative
contributions, we can trace through the importaif¢inces among our molecules. The relative
contributions of the different force field termsthe steric energy, based on Table 2, are given in
Table 3.

Table 3. Relative contributions to the total stemergy of cyclic hydrocarbons.

% Cyclopentane Cyclohexane Cycloheptane
Bond Stretch 2.9 5.2 2.9
Bending 19.2 5.6 19.8
Stretch-bend 0.9 1.3 1.7
Lennard-Jones| 23.2 55.1 37.5
Dihedral 55.5 32.9 38.1

The primary contributor to the steric energydgelopentane is the dihedral (torsional)
interaction. But for cycloheptane the steric eneapults more from a combination of dihedral
and unfavorable Lennard-Jones (Van der Waals) ctmtBor cyclohexane, angle bending is
relatively unimportant, compared to the other sggtems. Comparisons such as these are
invaluable for building your intuition about theezgy components of molecules. These
comparisons are fair because the contributionalarelative to the steric energy of the same
molecule. That is, the percentages are calculated the energies of one molecule.

However, it is important to remember what suglative contributions don't tell you. The
results in Table 3, by themselves don’t tell youakimolecule has the highest strain, nor even
the highest steric energy. These relative contiobgtalso don't tell you which molecule has the
highest enthalpy of formation. So you can’t pregibich molecule will be the most reactive.

Another analogy may be helpful. Jane gets adnighrcentage of her points from foul shots
than Susan. This statistic, however, doesn’t @l who gets more points per game. On the other
hand, the statistic suggests that Susan should evoher foul shots, which is helpful
information.

Comparing relative contributions is most usefbken the various force field terms have
comparable reference energies. For example, theusaterms in Table 2 from MM2 are all very
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small for linear hydrocarbons where the strain giesrare quite small. However, some
implementations of force fields shift the energyozir the torsional interaction so that even for
linear hydrocarbons the torsional terms are qaitgd. This does not mean that linear
hydrocarbons are torsionally strained! So whernirggetised to a new program and new force
field start by minimizing trans-butane and lookatghe size of the different force field terms. If
the force field terms are all small for butane themparisons of the type in this example will be
easy to interpret. If one or more terms for butareemuch larger than the others you will need to
remember that the relative size of that interacitioyour molecule will be over-emphasized
when looking at relative contributions. Making caamipons in the chang@srelative

contributions from one molecule to another willldie useful, however.

Conclusion

The discussions in the examples above are sumrdanZeable 4. Comparing steric energies
directly gives the most information, but you catyarompare steric energies directly if the
molecules have the same formula and the same nuanbdypes of bonds. We even need to
consider that not all C-C single bonds are equagmwe compare steric energies. In other words
the chemical environments of all the bonds mustchevalent. You can always compare
enthalpies of formation.

Table 4. Molecular mechanics steric energy compasidetween molecules.

Comparison Steric Energy Directly Difference withRelative
Reference contributions
Conformational Isomers yes yes yes
Geometric Isomers if same environments  yes yes
Different Formulas never | yes yes
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Introduction Section 4
Energy Minimization

The steric energy of a molecule is the sum obiheded and nonbonded terms (Van der Waals
energy, and the electrostatic energy). The lowestgy conformation is the set of bond lengths
and angles that gives the smallest steric enemgythler words, bonds find a compromise among
competing forces to determine the lowest energyocoration. The goal of molecular mechanics
is to determine the lowest energy conformation ofadecule. The process is called energy
minimization. The computer makes small changeberposition of every atom and calculates
the energy after every move. The move is keptdfghergy is lowered, otherwise the atom is
returned to its original position. This processeigeated many times until an overall energy
minimum is reached. One full cycle, where each amoved once, is called a minimization
step or iteration. Hundreds of steps may be nepessénd a reasonable structure for the
molecule.
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Figure 1. Finding the change in bond length to mire the potential energy. (a.) The
potential energy curve for a stretching bond. {ihg slope of the potential energy is linear
and changes sign as the molecule passes througlquiidrium bond length. (c.) The
starting geometry is with bond length Now calculate the change in bond length that
minimizes the potential energy. (d.) The slopehefpotential energy &t is k(r-ro), and the
slope of the line in the dE/dr graph is k. To citeithe change in bond length to find the
minimum potential, extrapolate down the line to zleeo point.
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Many methods have been developed to acceldrataminimization process. These methods use
information from the derivatives of the potentiakegy function to calculate the change in the
coordinates for each stefThe Newton-Raphson method is the most basicasitiechniques,
and we discuss this method first using a simplengte. We start with a diatomic molecule. The
only coordinate to minimize is the bond lengthlhie potential energy function is just the bond
stretching term, Figure la:

Eur=gk (16 o

where k is the force constant for the bond amslthe equilibrium bond length. The derivative of
Estr is the slope of the curve in Figure la:

d

Eo e (r-p) @)
The derivative is plotted in Figure 1b. Equatiosh®ws that the slope of the potential energy is
linear and changes sign as the molecule passagythtbe equilibrium bond length. For
example, in Figure 1la, when gthe slope is positive, when gthe slope is negative, and the
slope is zero atrThe slope of the line in Figure 1b is the secdenvative of the potential
energy:

d*Est

"o =k ®

Lets say that the starting guess for the bongtkebefore minimization is rFigure 1c. Now

we wish to calculate the change in bond lengthriatmizes the potential energy. In other
words, we wish to calculate the distance we needdee to find §, or 1,-r1. The change in bond
length is easiest to calculate using the derivaiiviae potential, Figure 1d, because the
derivative is a linear function. All we need deeidrapolate down the line to the zero point. In
reference to Figure 1d, the derivative of the paéat r is:

d
oy (h-r)  atn 4)
Solving this linear equation for the change in bterdyth just requires dividing by —k:
1dE
(=)=} qr (5)

This change in bond length is also shown in FiduteFor harmonic potentials, like Equation 1,
the calculated change is exact, so only one iteraiep is needed. When there are many force
field terms or non-harmonic potentials (eg. torsiovian der Waals, Coulomb) the derivative of
the potential is not linear, and equation 5 is arsipproximation. Therefore, in the general case
many steps are necessary to find the minimum,Heudérivative of the potential still gives a
good guess.
Newton-Raphson: Equation 5 is specific to a harmonic potentiak ¥én obtain a more general
solution by substituting for k using Equation 3:
1 d
(o= 1) = - o ©)
ar

Equation 6 is the basis of the Newton-Raphson nitftne first derivative of the potential is
called the gradient. The second derivative is dale Hessian, especially when more than one
dimension is involved. The Newton-Raphson methadse used for molecular orbital
calculations. You will see the Hessian mentione8partan and other molecular orbital software
packages. When many atoms are present, the Hessidre time consuming to calculate and to
invert. The many different methods for minimizataiffer in the way they approximate the
Hessian. The Newton-Raphson method requires thestesteps, but each step is time
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consuming. The number of steps required to minirstrgchnine, Figure 2, for several methods
is given in Table 1. The Newton-Raphson method alia®st the fastest in this case because
strychnine is a very small molecule, for larger ewoiles Newton-Raphson is very slow.

Table 1. Iterations necessary to minimize strycarfilom a
crude starting geometry.

Method Secondg Steps
Steepest Decents 32.4 3042
Conjugate Gradient 14.1 237
Newton-Raphson 13.0 15
Adopted Basis Newton-Raphsan 3.7 279

Figure 2. Strychnine

Seepest Descents:  In the steepest descents method, the Hessiastiagpproximated as a

constanty:

1dE,
(fo—m)=-3 G 7

You can think ofy as an effective force constant as in Equationi$calculated at the beginning
of the first step to give a specified step sizee @talog for the minimization parameters for
CHARMmM and MOE are shown in Figure 3. The Initigé®Size entry is used to fix

CHARMM MOE

Number of Minimization Steps 50 Iteration Limit RMS Gradient
Coordinate Update Frequency 5 Test
Energy Gradient Tolerance 0.0001 Steepest Descents 100 1000
Energy Value Tolerance 0 Conjugate Gradient 100 100
Initial Step Size 0.02 Truncated Newton 200 0.001
Step Value Tolerance 0

Figure 3. CHARMm and MOE parameters for energy mination.

Too small a step size can slow the minimizatiorcess. Too large a step size can prevent
convergence. Table 2 lists the effect of the siep en the number of steps to give a minimized
structure. After the first steepest descents staganjext steepest descents stage is taken in a
direction perpendicular to the previous directidhis change in direction is efficient in
optimizing all the variables for the minimization.

Table 2. Steps necessary to minimize strychnindifterent step sizes.

Step Size
Method 0.01 0.02 0.04
Steepest Descents 3998 3042 no converge
Conjugate Gradient 237 237 237
Newton-Raphson 15 15 15
Adopted Basis Newton-Raphson, ABNR 311 279 331
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The conjugate gradient and Newton-Raphson mstboly use the step size in determining the
initial gradient, so they are not strongly effecbgtthe choice of the step size.

Table 1 shows that steepest descents has verycpovergence properties. So why is steepest
descents used at all? Conjugate gradients can faftesith a poor initial structure, such as a
Protein Database file for a protein. Steepest desée less sensitive to the starting conditions.
Therefore, a few steps of steepest descents ilyiggad to refine a poor starting structure
before switching to a better method, such as catgugradient.

Conjugate Gradient: Conjugate gradient is a variation of

the steepest descents method. The calculatioreof th E
gradient is improved by using information from poeis \
steps. After the first steepest descents initaget a
second steepest descents stage is taken in aatirdet
is predicted to be optimal for minimizing the remag
variables. This direction is called the conjugdteation.
Pure steepest descents algorithms always takau@fs
after each stage, which may move the first minitiora
stage away from the optimal value. The conjugate

initial direction

direction leaves the previous minimization at tp&raum \>e
value while finding an efficient direction to optire the _
remaining variables. For example, for the mininizaof r conjugate

the structure of water the OH bond length and tangle direction

must be adjusted to minimize the energy. A schemati  Figure 4. One iteration of conjugate
representation of the potential energy surfacélfertwo gradients minimization.
variables is shown in Figure 4. Lets say that il
steepest descents finds the minimum along thalniiiection. The next best direction to look
for the overall minimum is not necessarily perpentdir to the initial path, Figure 4.

Table 1 shows that the conjugate gradients ndegthweastly better than steepest descents while
remaining nearly as fast per step. Conjugate gnéglis a good general purpose technique.

Adopted Basis Newton-Raphson, ABNR: For very large systems like proteins and nucleidsac
energy minimization can require hours. The seaschvéry efficient minimization methods for
such large biological macromolecules has led tmdified version of the Newton-Raphson
method that maintains excellent convergence priggaout in a much shorter time. Each step of
the ABNR method begins with a steepest descergs.stdnen the bond lengths and angles that
change the most are noted, and only these cooediaa¢ used in a second stage of Newton-
Raphson minimization. For strychnine, Table 1, fandiological macromolecules in general,
ABNR is clearly the best method.

Truncated Newton-Raphson: The use of second derivatives in Newton-Rapmsmimization is
responsible for the excellent convergence propertiewever, the inversion of the Hessian is
time consuming. An approach has been developediiestconjugate gradients to determine the
directions for the minimization and then the Hess@determine the minimum in that

directiorf. The “direction” of the minimization determine®tharticular bond lengths and angles
that will be changed. The minimum in that “directi@etermines how much to change those
bond lengths and angles. Truncated Newton-Raphasesimilar and often better convergence
characteristics to ABNR without a significant dréace in time. The Hessian is calculated
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directly from the second derivatives, which areleated numerically, but some small second
derivatives between distant atoms are neglectetiupcated).

The general approach to energy minimization igsde a “cascade” of techniques. First 50-200
steps of steepest descents is used to removeadotacts (atoms closer than the sum of their
Van der Waals radii). Then 50-200 steps of congigaadients is applied, followed by final
minimization using ABNR or truncated Newton-Raphseor small molecules only 10-20 initial
steepest descent steps are needed, and the intstenszhjugate gradient steps can be skipped.

Minimization Criteria: How do you determine when the molecule is minediz Molecular
modeling programs provide a number of alternaténods for deciding when to stop, Figure 3.
The Number of Minimization Steps (Iteration Limtign be used to stop the calculation. This
option is dangerous; you need to realize thatdfrtinimization stops for this reason that the
molecule_is not minimizednd you need to continue to submit the moleculeniaimization
until the energy no longer changes on successaps sA better option is to set the number of
minimizations steps to a very large number and tis=nan energy based criterion, like the
energy gradient tolerance (test).

Remember that the gradient is the derivativihefenergy. The energy gradient approaches
zero at the energy minimum. The criterion thermistop if the gradient is less than a selected
value. This method is illustrated in Figure 5. hogram
listings you will often see the term rms gradidms
stands for root mean squared. For some coordinates 390
(e.g. a bond stretch) the gradient might be pasitiv 250 1 dEsy _ dient
while for other coordinates (e.g. an angle) theligra 200 - dr ~ gradien
might be negative. So that the positive and negativ 150 -
gradients don’t cancel out, the gradients are sqliar 100 -
give positive numbers before adding them together t 50 |
make the comparison. (The standard deviation is 0 ‘ - ‘
likewise an rms statistic). 0 1 ' 3

An alternate method to stop the minimizatiotois
compare the change in energy between the curigmt st Figure 5. Stop if the energy
and the previous stefAE in Figure 6. If the change in  gradient is below the tolerance.
energy is below the set tolerance, then the miration
is halted.

Finally, the last available criterion is thepsteze.
The size of the change in the coordinates is maetto
and when this change is smaller than the set tudera
the minimization is halted. This criterion, whéyeis
the step size, is also illustrated in Figure 6. Step 200 1
size criterion is useful for shallow potentials,et 150 1
the energy doesn’'t change much for large changes i uf 100 |
conformation or distances between molecules. For E; 07
example for complexes, the energy gradient can be E>--¢-

350 4

E,, (kcal/mol)

350 -
300 -
250 +

(kcal/mol)

small and still give large changes in the distance 0 T 1
between the two molecules. In some programs, the
step size is called the rms displacement. Figure 6. Stop if the energy change

When several criteria are specified, the firgedon or step size is below the tolerance.
to be met stops the minimization. For example, as
mentioned above if you set the number of minima@asteps to a small number, the calculation
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will probably stop before a minimum is achieved.determine if the step count has stopped the
calculation, look at the output and determine & ldst minimization step is the same as the
number of minimization steps that you specifiecd asntrol parameter (i.e. Figure 3). To avoid
this problem, set the number of minimization stiepa large number. On the other hand, if you
have a large molecule, there is a danger in spegitpo large a number of minimization steps.
The calculation my take too long to run and thendbmputer is tied up so that you can’t do
other things. Or, you may have made a mistakeadondg minimization keeps you from quickly
making changes.

In CHARMmM, as a default, we normally choose Stps for small molecules and 50 steps for
large molecules. Then we make sure to resubmitnihemization if the last step matches the 500
or 50 that we set. Other than minimization stelps,criterion that you use is a matter of your
choice. The very best approach is to enter a Valueach and see which is statisfied first.
Entering all this data is tedious, so as a defaaltusually use just the energy gradient tolerance.
A value of 0.0001 is useful for very small moleajlaowever, you will find it necessary to use
0.001 or 0.01 for biological macromolecules ordolvated systems to save time. The units are
in kcal/mol/A in most programs.

References:
1. Leach, AndrewiViolecular Modelling, Principles and Applications, Longman, Harlow, Essex,
England, 1996.

2. “Forcefield-Based Simulations,” Accelerys, Cogan Diego, CA. Chapter 4 Minimization.

3. Jensen, Frankntroduction to Computational Chemistry, John Wiley, Chichester England,
1999, p322.
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Introduction Section 5
Molecular Dynamics

Introduction

One of the most important developments in maoteoular chemistry is molecular dynamics.
Molecular dynamics is the study of the motions ofecules. The time dependence of the
motion of a molecule is called its trajectory. Tihegectory is determined by integrating Newton's
equations of motion for the bond stretching, atgeding, and dihedral torsions of the
molecule. Molecules are always in motion. The motémolecules is important in essentially
all chemical interactions and are of particulaerast in biochemistry. For example, the binding
of substrates to enzymes, the binding of antigemtibodies, the binding of regulatory proteins
to DNA, and the mechanisms of enzyme catalysieahanced and sometimes completely
determined by the conformational flexibility of thelecules. Different domains of an enzyme
can have very different motional freedom. The peabbf protein folding is the determination of
the trajectory of the macromolecule as it assutseactive conformation after or during protein
synthesis.

Most chemistry is done in solution. Moleculandgnics has proved to be an invaluable tool in
studies of solvation energetics. Solute-solvergrantions are governed by the relative motions
of the solute and solvent molecules and the matiggponse of the solute to the presence of the
solvent. Some of the earliest dynamics studies teedetermine solvation Gibb's Free energies.
In biochemistry, solute-solvent interactions playaaticularly important role in determining the
secondary and tertiary structure of biomolecules.

Another important use of dynamics is in the sledor the global energy minimum in
conformationally flexible molecules. Molecular madics find the energy minimum that is
closet to the starting conformation of the moleciileis "local" energy minimum is rarely the
lowest energy, or "global”, minimum for the molezuFinding the "global" minimum can be a
very difficult task. In molecular mechanics a commpocedure is to start with many different
initial conformations and minimize them all lookifa the lowest energy result. This kind of
search can be very time consuming. Molecular dyognain the other hand, can help a molecule
"explore" its conformation space more efficieniiyre trajectory of the molecule is run at a high
temperature, so that the atoms will move veryramftheir equilibrium positions. Such high
temperature trajectories can overcome energy lbathat lead to more stable conformations.
The trajectory often starts in one conformation Hrah ends up in another more stabile
conformation.

Molecular dynamics is an active area of researd¢iiochemistry, molecular biology, and
polymer chemistry. Current work is directed towamtsking molecular dynamics a reliable tool
for the estimation of Gibb's free energies of stabrg conformational equilibria, and equilibrium
constants for binding interactions. These thermadyin parameters are determined by doing
free energy perturbation studies using moleculaadyics trajectories; see Section 7 for more on
free energy perturbation.

The difference between molecular mechanics gndrdics can be illustrated with a simple
example. Lets direct our attention to a single bional molecule, a C-H bond for example.
Assume that we start with the bond length too lasgg 2 A. If we were to run molecular
mechanics, the bond length would decrease untifinemum in the potential energy was
reached, Figure 10.1a. Further minimization wowtiadhange the bond length. If we were to run
molecular dynamics on our stretched bond, thedtaig would decrease the bond length, but the
bond length would continue decreasing past thdibgum length until it was too short. Being
too short, the bond length would then begin toease. Over time the bond length will oscillate
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about its equilibrium value, never coming to résgure 10.1b. In other words, in mechanics the
potential energy is minimized, while the kineticcegy of the molecule is ignored. In a dynamics
trajectory, both potential and kinetic energy dueled and the total energy is conserved by the
motion.

Minimization Dynamics
100 100
807 807]
T 607 T 607
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0 0 -
0.0 . 0.0 1.0
a. b.

Figure 10.1. The potential energy function for adholhe initial bond length at 2 angstroms is
too long. (a) Molecular mechanics finds the lowesstrgy state of the molecule. b. Molecular
dynamics find the time dependent motion of the mdke The vibration continues forever.

As chemists we often have too static a pictdmaecules. Our mental images of molecular
structure are derived from the printed page. Rathetecules are always in motion. The results
of molecular dynamics are very instructive, becaly@mics trajectories show us how
important motion is in chemical interactions. Wewsld remember that chemical reactions, by
their very nature, involve the motion of atoms asds are broken and made.

Dynamics Trajectories: Integrating Newton's Laws

Integrating Newton's Laws of motion is actuallywstraightforward. First, we use the
molecular mechanics force field as the potentiakgy for our molecule. Therefore, the potential
energy of our molecule involves bond stretchingl@mending, dihedral torsions, Van der
Waals interactions, and electrostatic interactidve.then solve for the motion of each atom in
the molecule as a function of time using this po&energy. However, as we begin to learn
about dynamics, lets simplify our system to makegs less complicated. Lets start with a
diatomic molecule. The results of our work on aah@c molecule will involve everything we
need to know about more complicated systems. THeaular mechanics potential energy of a
diatomic system has only one term, the potentiatggnfor bond stretching:

V= % K (r-rg)? 1

where r is the current bond length s the equilibrium bond length, and k is the focoastant
for the bond. We can simplify Eq. 1 even furthewd let x = - ¢, then

1
=3 k x2 2

The force that acts on the system is the derivativbe potential:
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av
F =g 3

Taking the derivative of Eq. 2 gives:
F=-kx 4

which is just the familiar Hooke's Law for a massaospring. Here the bond is the spring.
Newton's Law tells us that F= m a, where a is teekeration. The acceleration is the rate of
change of the velocity:

The position of the system, X, is determined bggrating the equation:

dx
at =V 6

Integrating Eq. 5 gives the velocity as a funcodtime, starting from an initial velocity of,v

t
V2 2 =
S dv :fm dt 7
- F
giving V2 =v1tg (to-t1) 8

assuming a constant force over the time intervdlvaimere m is the reduced mass for the
vibrating bond. Integrating Eg. 6 gives the positas a function of time, starting from an initial
position of x:

X2 to
Sdx =fvydt 9
X1 11

giving X=x1 + w(t-t) 10

assuming a constant velocity over the time interSaice the force, velocity, and position are all
changing with time, Eqs 8 and 10 are solved repaterer short time steps, first updating the
velocity and then updating the position. The valtig for each of these successive time intervals
is then the trajectory of the system. In dynamissutations the time step is very short, usually
dt =t -t = 1x1015 sec or 1 femtosec.

All that remains is to determine the initial ditifons. A common choice for the position is to
choose x = 0 at { = 0. But what about the velocity? The averageaigl@f a system is related
to the temperature; the higher the temperaturéatiger amplitude the motions. At x = 0 all of
the energy of an oscillating molecule is in kineiergy. The kinetic energy is given as



31

1
KE =5 m \2 11

The Equipartition Principle of thermodynamics gieesestimate of the kinetic energy in a bond
vibration as1/2 RT, where R is the gas constant; R= 8.314 J1nkol. Setting KE =1/2RT and
solving for the velocity gives:

v=\/RT/m 12

We therefore sety# A/ RT/m at{=0.

Egs 8 and 10 are all that is meant by "integgdtNewton's Laws of motion. However, our
example is a "one dimensional” system: there ig one motional variable. In more complicated
molecules, equations 8 and 10 would be solvedhi®xt y , and z motion of each atom.
However, no new theory is needed; the problemijasbmes more tedious. Computers are very
good at solving simple, repetitive problems. Irt the advancement of molecular dynamics is
very closely tied to the advancement of computehrelogy. The availability of fast computers
means that molecular dynamics can now become othe gttandard tools in computational
chemistry.

Periodic Boundry Conditions

Molecular dynamics is commonly used to calcupat®perties in solution. The molecule to be
studied is surrounded by solvent molecules, Figore.

Figure 10.2 Molecular dynamics using explicit wateslecules. 1,1,1-trichloroethane is shown
in the light shading.

Such explicit solvation treatments are especiabful when hydrogen bonding between the
solute and the solvent is expected to play an itaporole. All the extra solvent atoms, however,
greatly increase the time to do the molecular dyosumun. There is a real tradeoff between
accuracy and computation time. As a consequenegumber of added water molecules is kept
to a practical minimum, usually in the hundredsdiorall molecule simulations.

With small numbers of solvent molecules, thdasig to volume ratio of the system is large, so
that surface effects dominate. Surface effectaidethe imbalance of forces between the bulk of
the solvent and the vacuum surrounding the solwroplet. This imbalance produces surface
tension. The surface tension is great if you ardyshg aerosols, however we usually are trying
to model homogeneous solutions where surface temp&ys no role. Another surface effect is
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evaporation. Just like real solutions, water mdiexean escape into the surrounding vacuum
and in essence evaporate. The best way to avdateweffects is to use periodic boundary
conditions.

Using periodic boundary conditions, we don'tdnevworry about what happens at the sides of
the box of waters. Exact images of the box areksthaext to each other in all directions so that
there are no surfaces to the solution, Figure Be&Bodic boundary conditions eliminate any
surface tension effects.

/s 7/
B[ %
0 °|08° o .
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Figure 10.3 (a) Periodic boundary conditions effety create copies of the system in all
directions to avoid surface effects. (b) If a maledeaves the box the net effect is that a copy of
the same molecule enters the box from the oppsiiee In this way the molecule never really
can leave the box, i.e. evaporate.

The way boundary conditions are done in the adermlgorithm is to first check if the
coordinates of a molecule lie inside the box. If, tike molecule is translated so that it enters the
opposite side of the box. For example for a cubic with side length a, if the x coordinate of a
molecule is found to be outside of the box, x>antthe coordinate is replaced by x = x-a.

SHAKE, Rattle and Roll

One of the main difficulties in molecular dynashcalculations is accurately modeling systems
that have motions on very different times scal@sadcurately model high frequency vibrations
like C-H stretches, very short times intervals loe f'emtosecond time scale are necessary.
Therefore, setting dt = 1x¥0s in Egs. 8 and 10 is required. However, the @stiimg motions in
proteins, such as hinge motions of the backboke,giace on the microsecond time scale. To
model a one microsecond motion with the time irdaefor the dynamics trajectory set at one
femtosecond requires 1x3x10"° = 1x1@ or one billion time steps. Computer are getting
faster, but run times of months still would be riegg for large proteins with large numbers of
explicit waters of solvation. To get around thisldem, it is possible to ignore the very fast
vibrations, such as C-H stretches, by applying tairgs to these bonds. In so doing, the time
interval for the dynamics can be lengthened sevVel@l This approach is called the SHAKE
method in CHARMmM. For example, in a methyl group @+H bonds can no longer stretch
(SHAKE) but the C-H bond angles can still bendtlgat and the torsion angles can still change
(roll).

Applying constraints to high frequency vibrasdmas been found to be very effective in
conformational studies. However, free energy pbetion studies have determined that the
SHAKE method does not work when accurate thermagymaalues are required (see Section 7
for more on free energy perturbation studies). Bseaf this problem, biochemists are some of
the most voracious users of supercomputer timethm@approach to solvation called continuum
solvation electrostatics is a more approximatenbuth faster method (see Section 8).
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Problem 5.1: Dynamics trajectories

Write a short EXCEL spreadsheet or BASIC progtardetermine the trajectory for a diatomic
molecule. To make the problem more realistic, agstima bond is anharmonic, with potential
energy function:

1 1
V=35 k-5 kxx3 13

Please see the Section 1 for more information dra@monic potentials for bond stretching. With
your dynamics trajectory you will be able to see tilme dependence of the vibration. You will
also be able to determine the conditions for bregaki bond. For example, you can increase the
anharmonicity to determine how anharmonic the bondt be to be broken at room temperature.
Conversely, you can keep the anharmonicity constadtincrease the temperature until the bond
breaks, which is just what synthetic chemists demthey heat a reaction mixture.
Differentiation of Eqg. 13 gives:

F=-kx "‘% kX x2 14

Display the results graphically as two asteriskmssted by the distance x. To make the graphics
a little easier, you can use the program fragmieelsw. Start with:

R=8.314
T=298.2
k=200
m=10
x=0.05
dt=0.1
x=0

With these constants, increasingo 0.1075 will cause the molecule to dissociat29 2kK.
Solve Eq. 12 for the initial velocity, v. Becauddlee way that computer languages handle the
"="sign, you can drop the subscripts on v andxkekample write:

v=v+F/m dt 15
and X=x+v dt. 16

After you get your spreadsheet or program to wohiange the force constant k, the
anharmonicity, and the temperature to note theeffe

The Spreadsheet Version: Set up columns using the integrated Newton's egustl5 and 16 to
calculate x. Then to do the graphics, set up aneolwith values = x+10. The 10 is an arbitrary
offset to make the graphics look good. In the mekimn, put in statements similar to

=REPT(" ",15-D17/2)&"*"&REPT(" ",D17)&"*"

but, instead of "D17" use the cell address of tljaaent column with the x+10 values. The result
should look something like:
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\ X F x+10 plot
15.74559 0 0 10 * *
12.96835 1.574559 -277.72 11.5746 * *
8.462302 2.871394 -450.61 12.8714 * *
3.100163 3.717624 -536.21 13.7176 * *
-2.52184 4.02764 -562.2 14.0276 * *
-7.93464 3.775457 -541.28 13.7755 * *
-12.5648 2.981993 -463.01 12.982 * *
-15.5692 1.725515 -300.44 11.7255 * *
-15.9021 0.168595 -33.293 10.1686 * *
-12.7557 -1.42162 314.639 8.57838 * *
-6.27013 -2.69719 648.561 7.30281 * *
2.03583 -3.32421 830.596 6.67579 * ook
9.737817 -3.12062 770.199 6.87938 * ook
14.72284 -2.14684 498.502 7.85316 * *
16.1402 -0.67456 141.737 9.32544 * *

The BASIC program: The program listed below will then take careta plotting. Just slip in
your constants and initial conditions before theploThen put the integrated Newton's equations
15 and 16 inside the loop. The IF statement idrptd signal the dissociation of the bond. When
the molecule dissociates the program will print'ourip.” With these constants, increasixgo
0.1075 will cause the molecule to dissociate at2R8

REM program to solve Hooke's Law dynamics
but constants and initial conditionsin here

FOR i=1 TO 100

put Eq. 14, 15, and 16 in here

p=x+6

IF p>50 THEN LOCATE 1,1:PRINT"<<rrrip>>":GOTO qt
LOCATE 1,1

PRINT SPC(15-p);"*";SPC(INT(p+.5)+p);"*"

LOCATE 1,1

PRINT SPC(15-p);" ";SPC(INT(p+.5)+p);" *;

NEXT i

qt:
LOCATE 2,1
INPUT"type return to finish";a$
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Introduction Section 6
Distance Geometry and 2D to 3D Model Conversion

Distance geometry is a general technique foeggimg 3D-models for chemical substances.
Distance geometry is used in consort with energyimization techniques to find low energy
conformations for small molecules and large biormoles.

Biomolecules: It is very difficult to find the global energyimmum for complex molecules.
Proteins, for example, have many tens of thousahtteal minima. Determining the lowest of
the local minima can be a daunting task. Consioleexample the andy angles along the
protein backbone. For both angles there are roughde low energy conformations, two gauche
and one trans. Therefore each amino acid has np3gBE9 possible conformations. If a protein
has 20 amino acids the total possible backboneoomiations is & = 1.2x13° conformations.
However, 20 amino acids is a very small proteire @tdition of side chain torsion angles
greatly compounds the calculations. This problesummarized by stating that proteins and
nucleic acids have a very rough energy landscapevdlleys are the local minima and we need
to visit each valley to find the lowest energy stae. We need help. Experimental information
must be used to simplify the search for the tertsairucture of proteins and nucleic acids.
Distance geometry is the mathematical techniqueeati@avs the construction of three-
dimensional structures subject to the constrairusiged by experimental informatidit. NMR
is a particularly rich source of experimental coaisits. The Protein Data Bank, PDB, has 22,000
protein structures, 15% of which were determinet\mMR.*>

The NMR solution structure for a model of theatinic acetylcholine receptor complexed with
a potent natural antagonist is shown in FigureTha. larger structure is the antagonist,
bungarotoxin, and the smaller is a portion of theagonist binding site of thee-subunit of the
nicotinic receptor showing amino acids 185 — 19k @istance geometry calculation used 325
distance constraints and 64 dihedral angle conssfaEven so, the conformation of the peptides
is still not completely specified. As a result,tdisce geometry was repeated producing a set of
possible structures, Figure 1b. The NMR based tstres in the Protein Data Bank are routinely
sets of closely related structures that all satiséyavailable experimental constraints. The abilit
of distance geometry to generate multiple strustisen important advantage for conformational
searches in large and small molecules.

o
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Figure 1. (a)e-bungarotoxin (ribbon), and the antagonist bindiitg model of ther-subunit of
the nicotinic acetylcholine receptor (stick); PDirg 1ABT. (b) Four alternate structures for the
complex derived by distance geometry, superimpasetpone traces, with alternate solutions
for bungarotoxin in different shades of gray arackland the protein receptor models in white).
2D to 3D Mode conversion: Another closely related problem is the constoucof the initial
coordinates for molecular mechanics or moleculbitalrcalculations. The input for such
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programs typically starts with the output of 2D ésthers” or just connection tables. Molecular
mechanics is a wonderful technique for predictioguaate 3D structures, however molecular
mechanics programs routinely fail if the input sture is grossly distorted. Therefore, to get an
accurate molecular mechanics calculation, you testhart with a structure that is not too far
from a reasonable conformation. Molecular orbitalgpams also require that the input have a
structure that is somewhat close to the geomettyyibu are seeking. Otherwise, the wrong
atoms may end up being bonded to each other ifirtilestructure. Therefore, it is very common
to use molecular mechanics to produce the inpaifdit molecular orbital calculations. When
you use Spartan, the default is to build the irgtutcture using the Merck Molecular Force Field
when you minimize the structure in the Buildévlost molecular orbital programs also use
molecular mechanics to produce an initial guesshfierHessian. So even for molecular orbital
calculations we have the same problem; we needsan@ble input structure even if the user
isn’t very adept at drawing the desired moleculéhenscreen.

The list of atom connections for a moleculealied the connection table. All molecular
mechanics programs require a connection tablenmput for each molecule, in addition to
approximate atom positions. 2D-sketchers in theipkest form produce the connection table
and 2D coordinates as drawn by the user. The thidimension needs to be added before a
molecular mechanics calculation can proceed. Tleecommon ways of building the
approximate 3D-structure are functional group textgd and distance geometry.

Functional group templates are simply the basthdces and angles specific to a given
functional group taken from standard tables. Fanexe, the bond angles around bpbridized
carbons in alkenes and ketones are about. @& typical C=0 bond length is 1.22A. In other
words, the ideal bond lengths and angles from stahfbrce fields are used to guess the 3D-
structure. The torsion angles present a problepeseveral torsion angles are possible, e.g. two
gauche and trans angles fof spstems. Most builders start with all trans suites unless the
trans structure produces a close contact, at wyoaft the gauche conformations are used. From
the user’s perspective there are two types of bkesc The sketchers or builders in Spartan and
MOE, for example, require the use of pre-built fremts to assemble the molectiEhese pre-
built fragments already have the appropriate bendths and angles for the chosen functional
group. As the molecule is built, the result is anétically constructed in 3D. The second
approach for sketchers is to draw the moleculeligee in 2D. Sketchers in chemical drawing
programs and the Java Molecular Editor (JR#Ee examples of this style. Free-hand sketchers
present a real challenge since users can inputstes that are wildly distorted. The coordinates
presented by the user must be carefully adjustagpooximate real molecules. Rings systems
present a particular problem with free-hand sketchad require somewhat complex algorithms
to set up using the template approach. Some sketofeEntain a database of the torsion angles
for a wide variety of ring systems. Other sketchess very approximate force fields and
simplified minimization algorithms to guess thesion angles around rings. Distance geometry
is often an easier approach for ring systems. Torec@rd® and Corina programs are template
based builders and provide amazingly accuratetsties; even when compared to X-ray crystal
structures: 3

2D-sketchers work well for hands-on operatioawdver, completely automated procedures
are also necessary. The rapid acceleration ofriigediscovery process through combinatorial
chemistry and high throughput screening has addexiditional dimension to the 2D-3D
conversion problem. Drug companies currently mairggéorerooms filled with hundreds of
thousands of compounds and develop combinatabicries (groups of compounds) of hundreds
of thousands more. It is often necessary to stodaetrieve information on all these compounds
from exceedingly large computer databases. Theieffi computer generation of 3D-models for
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all these compounds is a daunting task. Oftenttinetsral information for these compounds is
stored only as a connection table, so even 2D+imétion is not available. The connection table
just specifies which atom is connected to which @uedcorresponding bond order. For example
the connection table for ethylene;G+CH,, in the common format used by “.mol” files is give
in Figure 2.

H, 5 Atom 1 Atom 2 Bond order
\__/ 1 2 2
/Cl CZ\ 1 3 1
1 4 1
H; He 2 5 1
2 6 1

Figure 2. Connection Table for Ethylene. The atammbering is arbitrary.

The lack of any coordinates makes conversion ofieotion tables to molecular mechanics input
files even harder. Corina, Concord, and distancengéry are designed to work from connection
tables. One popular form of connection table is‘8mailes” string. Smiles strings are very
efficient for storing large amounts of structurgfiormation***° The Smiles string for ethylene is
just C=C. Some example Smiles strings are givaabte I. Single bonds are assumed unless
otherwise indicated. Hydrogens are omitted. Bramgis shown by parentheses, teet-butanol

is CC(C)(C)O. Ring closing connections are showtlhhwumbers. Aromatic atoms are given in
lower case. JME, drawing programs, and MOE cabhealised to generate Smiles strings from
sketches, so you don’t really need to know thesride generating Smiles.

Table I. Smiles strings for some molecules.

Butane CCCC Ethanol CCO Acetaldehyde=GC
2-methylpropane CC(C)C Acetone C(=0)C ticacid CC(=0)O
Cyclohexane C1CCCCC1 benzene clcccccl uenelclccceecclC

Nitrobenzene clcccccl[N+](=0O)[O-] PhenylalanihNC(C(O)=0)Cclcccccl

In summary, efficient calculation methods aredes for the construction of the 3D-
coordinates of complicated molecules. Templatedasethods are very useful especially for
small molecules. In many cases, however, some ixeetal information is known for a few
distances or dihedral angles and the final streatumst be built to include these structural
parameters. Distance geometry can be applied tb anthvery large molecules and can easily
incorporate experimental structural informatiorthie form of distance constraints.

Distance Constraints

Distance constraints are ranges of allowable distsbetween pairs of atoms. An example is that
you can specify that two atoms are to be withiramal hydrogen bond distance of each other,
1.8-2.1 A. NMR spectra are very useful for expenitatly determining distance constraints using
nuclear Overhauser effects, nOe’s. nOe based tmeftional NMR spectra are called NOESY
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spectra. Distance constraints from NOESY are padity useful for studies of the tertiary
structure of proteins. The combination of NOEStalce geometry, and X-ray diffraction has
spawned a new field in the molecular life scierzadked Structural Biology. Using NOESY
spectra it is possible to determine that pairsafa are within the range of about 3-4 A of each
other® Just a few nOe based distance constraints catlygseaplify the search for the low
energy structures of biomolecules.

Distance constraints and distance geometry lsarb& very useful for small molecule work.
Hydrogen bond constraints and through-space nQ@andiss can be also useful for determining
the conformation of small molecules as well asgirs Distance constraints can also be values
that you make up to help guide the conformatiotheffinal molecule. For example, you may
want a conformation that puts two parts of a lorgdenule close to each other rather than the
default all-trans structures that most 2D-3D cosier programs generate.

Metric Matrix Distance Geometry

The input data for distance geometry are the distmbetween all the atoms in the molecule. The
goal of distance geometry is to find the atom posd, %, i, z for each atom i. The metric

matrix is used to calculate 3D atom coordinatesgiaiprocess called embeddifiA triatomic
molecule, Figure 3, will be used an example as iaeuds the steps in embedding. The atom
coordinates are

For atom 1: x, 1, z1 For atom 2: X y», 2 For atom 3: X V3, Z3 (1)

X2, Y2

a. b.
Figure 3. A triatomic molecule with (a) the inptivm-atom distances and (b) the coordinate
system for building the metric matrix from distasc&€he molecule is in the x-y plane, so z =0
for all atoms.

The metric matrix is constructed from the dot preidiof the coordinate vectors. For example the
dot product for atoms 1 and 2 isXxt+y1y>+2122). The elements of metric matrix for atom pair i,j
is then in general given by:

Oj = XXjtYiyj*+zz (2)

However, we don’t know the atom coordinates atotbginning of the calculation; these
coordinates are the final goal. Surprisingly, thetnc matrix can also be constructed from atom
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distances. The coordinate system for the impodatances is shown in Figure 3b. The origin is
the geometric center or centroid of the moleculee Gentroid is constructed so that

2Xi=0 2Yi=0 2z =0. (3)
The elements of the metric matrix can then be ¢tatled from (see appendix A).

6 =5 (b + - ) (4)

However, we still have a problem. The distance¢oorigin, ¢, and ¢, can’t be calculated
until we know the atom coordinates. However, &litit of geometric reasoning allows the
calculation of these distances (see appendix B)NFatoms:

N N

2 1 2 1 2

do =N Zdij NZZ Zdjk (5)
j#i =1 k>j

For our triatomic example:

1
dio :§(d§2 13) 12 0&3 Cés) (6)

A simple numerical example may help at this pdiet.the bond distances;xand ds, be 5 and
the non-bonded distancezdbe 6. Then

1 1

Ui =3 (5+ ) -3¢ ( 5+ 6+ 5) = 10.777 or = 3.283 )
1 1

dﬁo =3 ( 5+ 57) -2 ( 5%+ 6°+ 5% = 7.111 or gh= 2.667 (8)

Now the metric matrix entries can be calculated.dxample g is easy sincedin the second
term of Eq 4 is 0. Substituting Eq 7 and 8 into4egjves:

01=5(Go+ ) =10.778  gu=5(do+ Bo- i) =-3.556  (9)

Similar calculations give the final metric matrix:

10.778 -3.556 -7.22
G =| -3.556 7.111 -3.55
-7.222 -3.556 10.77

(10)

Given the metric matrix, as calculated from thexattom distances, we now need a way to
work back to the original coordinates. The atomrdomtes can be calculated from the

eigenvalues and eigenvectors of the metric matyvie.find the eigenvalues, and the
eigenvectors wby solving the equation:

G Wy = AqWa (11)

Where ¢ corresponds to the x, y, or z axes. Eigeans “the same” in German, and Eq 11 shows
that starting with W on the left gives back yon the right, multiplied by a constant, In other
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words, the same thingqwappears on both sides of the equation. The e#leas are a measure
of the size of the molecule in the x, y, and zaions (principle moments of inertia, but with
unit mass for each atom). The atomic coordinatedloan be calculated for each atom i:

Xi = A1 Wig ¥ = A2 Wi Zi = A3” Wiz (12)

You can calculate the eigenvalues and eigenveasing an on-line Web app#tFor our
triatomic example, the eigenvalues and eigenvetborthe x and y directions are:

0.70 0.408
A=18 w=| O A»=10.67 w=|-0.816 (13)
-0.707 0.408
Giving the final coordinates:
x, = 18" 0.707 =3 y=10.67" 0.408 = 1.333 (14)
X, =187 0 =0 y=10.672-0.816 = -2.667
x3 = 18/2-0.707 =-3 y=10.67" 0.408 = 1.333

These final coordinates are shown in Figure 4.cd¢atiso that as Eq 3 requires, the sum of the x
coordinates is zero and the sum of the y coordénatalso zero.

ALY
[— 6 —
(-3, 1.333@ T @ (3, 1.333)
o e
(0, -2,667)

Figure 4. Final coordinates after embedding.

The remarkable thing about distance geometry isithnaorks just as well for thousands of atoms
as it does for triatomic molecules. However, thiewdation of the eigenvalues and vectors for
large systems like proteins requires consideratmeputer time.

General Procedure™
The input for distance geometry programs is justdbnnection table. The complete embedding
process requires four steps.

Sep 1. The first step is to specify the distance rabgwveen every 1-2, 1-3, and 1-4 atom pair
using standard bond lengths and angles from a.tBblel-4 distances the minimum distance is
set for a 1-2-3-4 dihedral angle ¢f&d the maximum distance for £86or non-bonded atoms
the minimum is set to the sum of the Van der Weads. Any distance constraints that you input
are also included in the list of distances. All thgtance ranges are then checked for consistency
using the triangle inequality, Figure 5. For exaspthe maximum distance between a 1-3 atom
pair is the sum of the 1-2 and 2-3 bond distandgss dio + tha:
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If the atoms are C-C-C, the standard bond length53A giving a maximum 1-3 distance of
2x1.53A.

Q.
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Figure 5. Checking distance maximums for consistenc

If an initially chosen maximum distance is largearnt allowed by the triangle inequality, the
value is lowered. This “smoothing” process helpgbten the distance constraints. The
minimum distances are also smoothed in the sameWeyresult is a set of consistent upper and
lower bounds for all the pair-wise distances betwtbe atoms.

Step 2: Next a distance between each atomsetnosen at random between the upper and
lower bounds set in step 1. This step is an impbfeature of distance geometry. The
assignment of a random distance means that yowht#in a different result each time you run
the algorithm. This element of randomness is orte@badvantages (and disadvantages) of the
distance geometry approach that can be exploitecbioformational searches.

Step 3: The metric matrix is calculated fréra thosen random distances. The eigenvalues
and vectors are then calculated and used to fiadital coordinates using Eq 12.

Step 4. The coordinates generated by distgaometry are very rough. The atom positions
must be optimized using molecular mechanics wihrglified force field. This adjustment
process is done in two steps. First any chiral ramgs are enforced. Working with chiral
constraints first is necessary because moleculahamcs minimization can switch chirality
inadvertently, and also enforcing chirality firsakes subsequent minimization faster. After
chiral constraints are satisfied, the coordinatesadjusted with a force field that greatly
penalizes atom positions that violate the distdrmends that were established in Step 1.

The force field first checks to see if the dista between atom i and atomjj, & outside of the
distance bounds; if outside an error term is cated:

2
(4 -B)
e=——— (15)

where B is the violated upper or lower bound. This erswnt is summed over all atom pairs

that violate the distance bounds. Violations of¢hial constraints are also added to the distance
errors to complete the force field. This forcedied minimized using standard conjugate gradient
techniques. The force field does not include bdretch, angle bending, out-of-plane, and
torsional constraints directly. Therefore, the wytied structure is only as good as the original
distance bounds. In other words, the final striectsistill quite crude and must be further
minimized using a traditional force field or molésuorbital calculations.

For example, Figure 6a shows the results foretoe. The ring atoms are not flat as expected
for spf hybridized atoms. The conformation arounéiaems can be improved by specifying the
atoms as chiral atoms, even though they are rtetpating (+) and (-) around the ring. The
distance geometry program will enforce a flat getoyné&igure 6b.
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Figure 6. (a) Distance geometry results for tolugbgDistance geometry with Sg atoms
specified as chiral.

Even so, the results are still quite distorted ftbmexpected planar geometry. Submitting the
distance geometry results to a conventional moécukchanics or molecular orbital calculation
quickly clears up any remaining problems. The distageometry results for complicated ring
systems can often be quite good, however.

Extensions to Distance Geometry

Many extensions of the basic distance geometryguio®e have been implemented that provide
final structures with less strati’® Distance geometry is also used in conjunction withecular
dg/namics for energy minimizatiofi*°The technique is often used for conformation sessth
1920 aspects of drug discovety*>and protein folding studi€é:?®

Appendix A:

Given atom 1 with coordinates,¥1, z1 and atom 2 with coordinates, ¥, z the distance
between the two atoms is:

2
1o = (Xa-X2)*+(Y1-Y2)+(21-22)° = X *+2XaXo+ Xo™+ Y12+ 2y1Yo+ Yo'+ 21°+22120+ 2, (17)

The dot product between the two atoms coordinates+yiy.+z:2,. Rearranging Eq 17 to
isolate the dot product gives:

2
dio= (% Yoo+ z0)+ (7 Yo + 2°) + 2(XXz +Y1Y2 +2122) (18)

The first term in parenthesis is the squared destari atom 1 from the originig. The second
term is the distance of atom 2 from the origi§, dRearranging Eq 18 gives:

(X1X2 +Y1y2 +Z122) :% ( dio + Oéo - diz) (19)

(Many authors on distance geometry describe Ecg2Bealaw of Cosines, which is a standard
geometrical construction. Given two vectofsamd W, the dot product is:

—

VW =|V|W]|cosB = dydycosb
which explains the connection with the cosine efdéihgle and the name “Law of Cosines.”)
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Appendix B:

The fact that the distance of an atom from theimggn be calculated completely from the atom-
atom distances using Eq 5 is surprising. A derrafor three atoms, Eq. 6, is given in this
appendix. A more general derivation is given by ¢laet. a#® However, the general formula is
easily obtained from the three atom result. Theadie of atom 1 from the origin is

dlo=X+yi+7 (20)
The origin is the centroid of the atoms, Eq. 3:

X1+ X% +X=0 “ty:+y;=0 2+2+25=0 (21)
Solving for the coordinates of atom 1 gives:

X1 =X - X3 Yi=-Y2-Y3 1=-2%-2 (22)
Substituting Eq 22 into Eq 20 for one factor @fy, and z gives:

dio = XXz — XiX3 — ViY2 — V1Y — ZZ2 — Z1Z3 (23)
Rearranging gives two dot products:

dio == (XX + VY2 + 2122) — ( %Xs + Yy + 21Z3) (24)
Using Eq 19 for the dot products gives:

dio:'%[(diOﬂLOéO'diz)+(0ﬁo+d§0'di3)] (25)

Rearranging gives:
4C€o: (Oﬁz'dgo)ﬂdis'céo) (26)

Subtracting a term ini@ from both sides gives:

3dip= dp+dis- (dio+ o + o) (27)

The corresponding results for the other two atoras a

30éo: Cﬁz*‘és'((ﬁo“ﬁo*(ﬁo) (28)
3= dis+ s (dio+ B + o) (29)
Adding Eqgs 27-29 gives:

3(0ﬁo+oéo+C§o):2(f§2+d§3+oé3)-3(cfo+0éo+0§o) (30)

Solving for the sum squared distances to the oggias a result entirely in terms of atom-atom
distances:

1 2
(C€0+d§0+£0):§(d12+di3+0§3) (31)
Finally substituting Eq 31 for the last term in Efgives:

3C€o: O&z“ﬁs'%(diz*‘ﬁs*‘?és) (32)

Finally division by 3 gives Eq. 6.
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Introduction Section 7
Free Enerqy Perturbation Theory, FEP

The greatest value in molecular dynamics isathikty to model the internal motions of a
molecule. Internal energy, enthalpy, entropy, aifth@ Free Energy all include contributions
from the motion of a molecule. Therefore, molecalgmamics provides a way to estimate these
important thermodynamic parameters. The currerttrneghod for practical calculations of
Gibb's Free Energies is free energy perturbatiearth based on molecular dynamics. Free
energy perturbation (FEP) theory is now in usealewdatingAG for a wide variety of processes.
For example, the Gibb's Free Energy of solutiohyafrophobic moleculéds of binding of crown
ethers to polar organiésand the binding of NADP and NADPH to dihydrof@aeductase
have been studied. In fact, the combined insighksray crystal structure determination, NMR
solution structure determination, and FEP studashed to the consensus that the motions of
proteins and nucleic acids play a major role irdivig interactions. W. L. Jorgensen, in his
article "Rusting of the Lock and Key Model for Rimt-Ligand Binding," states simply that:

"These examples confirm the reasonabl e expectation that flexible molecules distort
to form optimal interactions with binding partners."4

A dynamic view of binding interactions is necesdarynderstand biochemical phenomena.
Molecular mechanics calculates the steric enefgymolecule at absolute zero in temperature.

What is the connection of the molecular mechartescsenergy to the thermodynamic internal

energy and Gibb's Free energy of a substance?ypmthesis that makes the most sense is that

the internal energy)U, is the time average of the total energy of tliderule. The total energy

of the molecule is the kinetic plus potential eyerg

E = kinetic energy + potential energy 1

The potential energy is just the molecular mectesieric energy. Molecular dynamics provides
us with the time dependent energy of the moleallaye need do to g&U is average the total
energy during the trajectory calculation.

Now we turn to the relationship of the stemergy to the Gibb's Free Energy. In statistical
mechanics, we find that the probability of a giwtate of a system occurring is proportional to
the Boltzman weighting factor:

probability of occurrencex eE/RT 2

where E is the total energy of the system, Egn bther words, states with low total energy are
more likely to occur than states with high eneygtate of the system is determined by the
conformation and motion of the molecule. The comfation determines the steric energy and the
motions determine the kinetic energy.

In perturbation theory, we look at the effecaafmall change in the structure of a molecule on
its energy. To do the perturbation, the total epesglivided into two parts

E=K+K 3

where K is a reference structure ang i§ a small perturbation from the reference stmgctihe
perturbation is a small change that we place upersystem, say a small change in bond angle or
a small change in the charge on an atom. The g@uneling change in free energy of the system
caused by the perturbation is giveR-&s
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G -G =-RT In < eE/RT>, 4

where < 3 denotes the time average over the motion of tfeeeece structure from a molecular
dynamics run. The'&/RT term is the probability of occurrence for the snchlnge in energy
caused by the perturbation, from Eq. 2. The freexg@nthen depends on the time average of the
probability of occurrence of the perturbed struetdin other words, if the perturbation produces a
small change in energy, that change will contritiatthe Gibb's Free energy.

In our case however, we wish to find the chandese energy for large changes in a molecule.
These changes, or mutations, include changingahtoanations of bonds, or attaching a
hydrogen ion, or changing a hydrogen to a methyligror even a phenyl group. For example,
we might like to mutate glycine into alaninier a study of site-specific mutagenesis of an
enzyme. How do we apply EqQ. 4 to such large chahgssume that we wish to mutate molecule
B into a different molecule A. First we define @alcenergy for mutating molecule B to A as

E\=AEa +(1-A)Eg 5

where B is the total energy for A andgHs that for B, and is the coupling parameter. Whin
=1 the energy corresponds to molecule A, and wze@ the energy corresponds to molecule B.
WhenA is at intermediate values, the system is a hypictdesuperposition of A and B. It might
seem quite strange to have such a combination@fitelecules, in fact it is very unphysical,
however, the theory is well-behaved and very usabule-the-less.

For the complete mutation to take place we warpm O to 1 over the course of the dynamics
run. We divide this full range into short time sk which are short enough that we can treat the
change in each time slice as a perturbation. Theeapply Eq. 4 to each time slice and then add
up the result for all the time slices. Let thealue at each time slice be numbekagdAo, A3, etc.
Then the difference in Eq. 4465()\;) for each time slice, i=1, 2 ,3,...n, for n taiate slices.

Then the total change &G for the perturbation is

n
AGg.>a = Z AG() 6
i=1

Since each time slice in the mutation is a sefainge, we can simplfy Egs. 4 and 6. We do the
mutation is small steps; therefore €< RT for each time slice in the perturbation. Rembering
that eX= 1-x, we can expand the exponential in the Boltzigatribution:

eE/RT=1-E/RT 7

Then Eq. 4 simplifies to:

G-&G=-RTIn<1-B/RT>=-RTIn(1-<EB>/RT) 8
Next remember that In(1-% -x, when x is small. This approximation on Eq.i8eg:
G-G&=-RT (-<B>/RT)=<BE> 9

In words, this simple result means that the cham@&bb's Free Energy for a perturbation is just
the time average of the total perturbation endxgw applying Eg. 9 to each time slice in the
total mutations simplifys Eq. 6 to:
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n
AGp>a = ) <EQi) > 10
i=1

where EA;) is the total energy for the time slice in thetation from Eq. 5. This very simple
result makes FEP studies easy to do. The time geenaEq. 9 is automatically calculated during
trajectory calculations. All we need do is to chahgn small steps during the trajectory. This
approach to FEP simulations is called the slow-¢inawethod.

Our initial efforts to use molecular dynamics fausstrated, however, because
molecular dynamics is a classical theory, whickegitoo high a weight to high frequency
vibrations. We must be careful to account for tHifeence between classical theories and the
true distribution of vibrational energies in mol&xs1 We can do this by always calculating the
difference between our system and a referencersystecalculating differences, errors tend to
cancel, and in so doing, classical molecular dyoans a suprisingly useful tool for
understanding complex systems. The success ofadagdynamics is due in part to the
observation that the major contributiong¥@ for solvation and binding interactions are low
frequency vibrations, especially torsions, which laandled adequately by classical theory. In
addition, these low frequency vibrations tend targie the most in systems of interest; high
frequency vibrations change little, therefore tightrequency vibrations cancel out in
comparisions.

For example, to study the Gibb's Free Energgobfation of molecule B)soGg, we will
choose molecule A as the reference structure. Titatian will then be from B to A. To
determine the difference in Free Energy of solvahetween B and A, we will construct the
following thermodynamic cycle:

AsoIG'A
A(@g > A (9)
1 |
Acd | -AGY 11
B >A B->A
| AsoIGB !
B(aq) ---> B (9)

whareAG is the Free Energy of perturbation of B to Ahe solution phase, and
IS thAe Free Energy of perturbation in the gasphAdding contributions around the

cycle glves

AsolGB = AG?—LA +AsolGA — AG%_>A 12
We then determine the difference

AsofGB - AsolGA = AG%SLA - AGgB_>A 13

These kinds of differences are often cal’és values:

a
AAG = DsoGa - AsoBA= AGg s ~AGE s p 14
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We choose a reference system, A, wilgggGa is known from experiment. We can then predict
our final result:

AsoGB = AsolGA(experimental) + AAG 15
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Section 8:
Continuum Solvation Electrostatics

Molecular binding events control most of the preessin living cells. Binding interactions
include enzyme substrate binding, allosteric cdrf@nzyme activity, protein nucleic acid
binding, and protein-protein binding. Protein-pmtkinding is important because most of the
enzymes in the cell function as a part of a proteimplex and are not active as individual
molecules. Molecular binding is very specific. Biolecules have evolved over time to interact
only with specific substrates or other biomolecuTdss specificity is achieved through careful
control of molecular recognition. Molecular recdgom is the result of specific intermolecular
forces. These forces include, in order of streniggdrogen-bonding, charge-charge interactions
(salt bridges), dipole-dipole interactiomsytinteractions, and hydrophobic interactions. The
strength of all these forces also depend criticatiynteractions with the solvent. For example,
hydrophobic interactions are completely solventelmi It is the central role of the solvent that
this section will explore.

The effect of solvation on molecular recognitaam be striking. For example, the hydrogen
bond that forms in proteins, the peptide hydrogenel) Figure 1a, is quite strong in the gas
phase. The gas phase interaction energy is ro2ghkjd/mol. However, in aqueous solution the
peptide hydrogen-bond strength is much weaker ttess~5 kJ/mdl

O

\ \N H
- — H
OYN H O\\( \/U\o /\N+/\/
HTN
(a)

(b)
Figure 1. (a) Peptide hydrogen bond, (b) Salt leridgtween glutamate and lysine.

Salt bridges in proteins are another example ohgtsolvation effects. Salt bridges form in
proteins from the electrostatic interaction of aci@hd basic amino acid side chains. The salt
bridge between glutamate and lysine is a commarctstral element, Figure 1b. Salt bridges in
proteins can be either stabilizing or destabilizilegpending on the solvation Gibbs Free energy
of the ions and the environment of the salt briigihe folded protein. In short, it is impossible
to study molecular recognition without a detailesWwledge of solvation.

It is frustrating that so little is really knovatout these fundamental forces that are so
important in molecular recognition and protein folyl Changing our calculations from the gas
phase to the aqueous environment, where the dieleonstant is ~80, should have a large effect
on molecular interactions. The difficulty is howtteat the solvent waters. In several exercises in
this Tutorial we do molecular dynamics calculatioisgng discrete water molecules. However,
these calculations can be very time consuming. i@ouin solvation models have been
developed by Clark Still's group at Columbia andynathers that are designed to improve
molecular mechanics calculations in solvent. Mamyatular mechanics and molecular orbital
programs include continuum solvation calculations.

In continuum solvation models, the solvent iddeled as a continuous, uniform environment
with a relative dielectric constargt, Since there are no discrete water molecules, sfygific
interactions such as extensive hydrogen bonditigeig@rimary solvation sphere or very
directional dipole-dipole interactions cannot hedgtd. However, the continuous solvent model
does allow the study of the stabilization and dekration of polar species in a polar solvent
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environment. Continuum solvation treatments are asy popular with organic chemists for
studies of solution conformations of molecules #rastabilization of polar transition states.

Figure 1: Continuum solvation model

Continuum solvation energetics are roughly basethe following model. The electrostatic
distribution in the molecule is modeled by poinades that are placed at each nucleus. The
molecule is then placed in a cavity in the unif@oivent. The size of the cavity is determined
roughly by the Van der Waals surface of the molkectihe dielectric constant inside this cavity
is taken to be that of a vacuum. The solvent igrassl to have a uniform constant relative
dielectric constant of;, which for water is 78.54. The presence of changéise molecule
polarizes the solvent, Figure 1. Thes. .aducedgdsaor image charges, effectively “mirror” the
charges on the molecule. Remember that the eléatimsnergy of two charges,and g,
separated by a distance r in a medium with consgdative dielectric constaut is given by the
Coulomb energy, Figure 1:

€coulomb —4.’.'5: 8.0 r (1)
@(r)
0 .ql . g '

Figure 1. The Coulomb potential for two chargesngl g, of the same sign in a uniform
dielectric. The relative dielectric constant of #wvent screens, that is attenuates, the
interaction. The screening is symbolized by the twackground.

The effect of the polar environment of the solveam then be roughly described as being
calculated from the electrostatic energy of inteoacof the induced image charges in the solvent
with the point partial charges on the atoms inrtfzdecule.

Gibbs Free Energy of Solvation

The Gibbs Free Energy of solvation is approxedats
Asoﬁ3 = AsoGVdW + Aschav + AsoGelec
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wherelAsoGvgw IS the solute-solvent Van der Waals interactionl &,Gcay is the work
necessary to create the cavity in solv&gsGe,y is calculated by

AsoGeay = (surface tensig(surface area) yo

This term arises from the entropy penalty for r@agement of water molecules and is
unfavorable. Thés,Gyaw arels.Geay terms are often combined since both are approeimat
proportional to the solvent accessible surface.drea combined Van der waals and cavity
surface tensiony, is approximately in the range 7-10 3/Aifferent authors and programs use
different values; we will usAssGvaw + AsoGeav= 7 JIK ASA. AsoGelecis the work necessary to
transfer ion from vacuum to solution with the cédted electrostatic potential.

Now consider a small spherical ion in solutibnelectrolyte solutionAsyGelecalso includes
the potential of the ionic atmosphere of neighbossij.The neighborhood of an ion is
predominately comprised of the counter ions of gpacharge. For example for a positive ion,
ai, the counter ions of chargefqrm a negatively charged halo around the positwe The
Coulomb interaction of the ion with this halo igthstabilizing, that is negative in energy, Figure
2.

@
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Figure 2. For electrolyte solutions a positive issurrounded by a halo of negative ions.
The Coulomb interaction is negative for these axtgons.

The Coulomb potential energy can be broken intptioeuct of the electric potential multiplied
by the charge on the ion of interest. We will ¢h# ion of interest the central ion, i.

Vin=aq
Comparison with Eq. 1 shows that the electric pidéat ion i due to the presence of ion j is

-4
P = aree, fi

The effect of the dielectric constant of the sotyenis to attenuate the charge-charge
interaction. However, the presence of counter ages screen the interaction of two charges.

The screening caused by the ionic atmosphetetesmined by the distribution of counter ions
near the solute ion, p(r) dr, which is the proligbdf finding a counter ion at a distance r to
r+dr. This distribution is given by the Boltzmanistdbution using the energy of the interaction
of the solute ion, i, with a counterion, j, givendxr)g,. The number of counterions that will be
found at a given point a distance r from the solorels
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where N; is the number of ions j in solutiolMhe Boltzmann constantik the gas constant per
molecule R/N,. The probability of finding an ion j at any angtea radius of r from the central
ion is:

—(r)q;
p(r) dr = 41°N, e KT dr

Here the #r’dr is the annular volume at all angles betweenatias of r and r+dr. This
probability distribution of the counter ion halosown in Figure 3.
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Figure 3. The distribution of counter ions aroursbhute ion. This oppositely charged halo
has a probability maximum at the Debye length, r
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The Boltzmann distribution takes into account tiermal jostling of molecular collisions within
the solvent that disrupt the ionic halo. The expoia¢ decrease of the Boltzmann distribution at
a point and the’rincrease of the volume at r to r+dr multiply teeyi distribution that has a
maximum. This distance is called the Debye lengthThe Debye length is a measure of the
thickness of the ionic atmosphere. Finding the maxn in the probability distribution gives, for
very dilute solutions with uniform solvent dieléctand unipositive and uninegative ions (e.qg.
NaCl)

_305.pm 1
o= (mim)”? T

Where the term in the denominator is just the sgjuaot of the ionic strength. The Debye length
is often specified by the reciprocal parametefhe polarization of the solvent and the ionimhal
determine the electric potential at each poinh&golution. Once the electric potential is known
the probability distribution of the ions can bectddted. Unfortunately, these calculations
depend on each other. A common approach is tonfiedte a rough guess of the potential and
then to solve for the counterion distribution. Tistribution is then used to calculate a better
guess for the electric potential. This processuotessive approximations is continued until the
electric potential no longer changes.



54

The electric potential is then used to calculgtf.e. First the work necessary to charge the
solute ion within the solution is calculated:

We| = fOZie(ﬂ dq
The electrostatic contribution to the Gibbs Freergy of solvation can then be calculated by
finding the difference between the electrical wodcessary to charge the ion in the solvent and
the work to charge the ion in vacuum:

DsoGelec = Na Weledreal) — M Weedideal) = Ny Wsolution— Na Wyacuum

Poisson Equatiort

The electric potential is calculated from the Pamssquation, for non-electrolyte solutions or the
dilute solution limit for electrolyte solutions. &PPoisson equation depends on the charge density
within the solution. For ion type i with the charge the ion gthe charge density is:

pi(r) =ai pi(r)
The charge density is the charge per unit voluniéchvdepends on the polarization of the
solvent and the distribution of ions in the halouard the solute. The Poisson equation also
depends on the spatial variation of the dielecmiestantg(r) = &, &(r). The Poisson equation is
2 ory = R0
D (ﬂ(r) - s(r)

where

is the curvature or wiggliness of the electric ptitd. The Poisson equation shows that the
higher the charge density the faster the potedt@gs, Figure 4.

a(n)

Figure 4: The higher the charge density, the higieicurvature of the electric potential.
The higher the curvature, the faster the elecrieqtial decreases with distance away from
the solute. The charge density screens the eléatiosteractions.

For a spherical potential the curvature simplifigs

10%rqm) __ pin)
roor &(r)

To get a feeling for the Poisson equation we stih a very simple model. This model is for
electrolyte solutions of small ions. The resulthis Debye-Huckel model, when applied to very
dilute solutions. The ions are modeled as pointggmembedded in a uniform solvent. lons in
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this model do not have a "size." For a uniform sotwielectricg,(r) = €. The charge density is
the sum of the charge density for the positive meghtive ions in solution:

N, -Q(Ng. N, Q0

p+:q+—e kT p_:q_—e kT
gne N 90a

Pions=P+t P-= CI+V e kT +q—ekT

The concentration of ions is also assumed to bgsreall so that(r) << kT and the exponential
term in the Boltzmann distribution simplifies to:

e kT =1 _M
Then the charge density of the ions simplifies to

N, N N _
Pions =P+ + P- = Gy, (1 _M) 0y (1 _Eﬂik[-rm')

Q. Q(nNg
Pions = (Ohy/- +qv)(mN9Qi+qV o)
The first term cancels because of charge neutréiegnumbers of positive and negative charges

are equal, which gives:

N.
Pions = kT (Q+L+q V)

The term in parentheses is the ionic strengtlindfe are several sources of ions, this sum must
include all the ions in solution. With = z e and zthe charge number on ion j:

S

pions:—g%-lt-2 = M Z Z_L

=1

Thenk, the inverse Debye length, is defined as:

rsokT :E: ( j

The N/V term is the number concentration withédual to the number of ions of type j in
solution, and V the volume of the solution ifi. substitution into the Poisson equation gives the
much simpler result:

2

62
e = (ram)

The solution to this equation is in the form:

A «kr
an=,¢€
The A constant can be evaluated using the apptedr@indary conditions giving
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This result is called the shielded Coulomb poténtvaich takes into account the dielectric and
the interaction of the solute ion with its oppadsiteharged ionic atmosphere. The concentrations
can be converted into molality using:

a Ni/Na
M =V (1000 L n) do
where ¢ is the density of the solution in kg'Lwhich is equivalent to g mbk The substitution
gives:

2 3 s
,_€(1000L M) doNamo &,
K2 = S e kT Zl:zj my/m
J:

and the summation is just the ionic strength

This model gives the Debye-Huickel result for thevitg coefficient of the ion in solution when
the electrical work is calculated (see below feirailar example). The Debye-Huckel approach
assumes that RT i = W Na.

The shielded Coulomb potential reduces to Cohblsroaw for very dilute solutions, because
the exponential term in the shielded Coulomb paéapproaches 1:

-0, Ks0, p oo, e'=1-«xr o 1, @(r) - Coulomb’s Law

Born Approximation

Modeling ions as point charges with no radiugeis/ approximate. A model that takes into
account the size of the ion has been developeahwbicalled the Born approximation. The ion
is modeled as a point charge in spherical cavitadius 1. The relative dielectric constant inside
the sphere is that of a vacuugn= 1, and the solvent outside of the ion raditsssumed to be
uniform with dielectric constart, Figure 5. The model applies to very dilute elggtes or non-
electrolyte solutions. In other words there areoonter ions as in the example above. The
solution to the Poisson equation is now more ingdlisecause the dielectric constant changes
with position as well as the charge density. Wepdyrpresent the results here. The electric
potential at the center of a spherical ion of radiin the Born approximation:is

@(0) =5——

i
ATELE, T, g=1

&= 78.54

Figure 5: The Born Approximation assumes a chargespherical cavity of radiuswith
€= 1 inside the cavity angl constant for the uniform solvent forr>r
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The presence of the ion polarizes the dielectribénbulk solvent. The actual charge density in
the bulk of the solvent remains small, becausgdttarization dipoles in each water molecule
cancel each other, except at the boundari¢swever, a surface charge is induced at the cavity
surface, which is oppositely charged from the Kigure 6. This surface charge creates an
electric potential at the center of the sphere. §pagial variation of the electric potential cresate
an electric field at the center of the ion, whisttalled the reaction fiefiThe surface charge can
be shown to behave like a "image" charge that therbulk of the solvent opposite the point
charge on the ion, Figure’IThese image charges are discussed in the intioduoctthis

section.

Figure 6: The ion polarizes the solvent. The sdldgpoles don't cancel at the surface of the
cavity, giving a surface charge. The surface chgegeerates a potential at the point charge
representing the ion. The field from the inducedazie charge is called the reaction field.

The electric work in charging the ion can nowch&ulated
dwe =@ dq

_ 1,
Wi = [2°q dg =" [*°q dg

You might wonder why the work is not simply just, since an ion has an integral charge, +1e,
+2e, -1e, etc. The integral takes into accountdk#-interaction.” That is the charge is
visualized as being added in small increments. Baghincrement interacts with the charges
that have built up from previous increments, Figliyrand the integral is:

(07 o Q
ORISR YO
5 - 5+ - &+ -7 & -~ 6

Figure 7: The electrical work integral is done imadl steps.
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The electrical work is then:
zZé
T BTELS I

Wel

The electrostatic contribution to the Gibbs Freergy of solvation is then the difference:
DsoGelec= Na Wsolution— Na Wyacuum

which is:

R e (e

8 \&&% &/  8mE.h T &

Generalized Born Approximation

The result above is for a simple spherical iorthenGeneralized Born approximation, the
electrostatic energy is a sum of this form ovettalatoms in a solute molectil€or molecules

the partial charges that are placed at the nudkeach atom replace the charge on the ions
given above. To complete the calculation of theaodn Gibbs Free Energy, the cavity and Van
der Waals terms must be added in. Because thess tlpend on the solvent accessible surface
area of the solute, the general formulation ofBben approximation for molecules and non-
spherical ions is called the Generalized Born/Suleecessible Surface Area approach, or
GB/SA for short.

The GB/SA method is very rapid and does a restderjob of modeling non-specific solvation
effects. These effects are mainly the screenirecetif the dielectric constant of the solvent and
the ionic halo. The approach also accounts fostabkilization of polar solutes that results from
solvent polarization. These electrostatic termmarily affect the enthalpy of solvation. The
entropy changes are accounted for in the cavity.ter

The GB/SA approach can be used for any sohaent,not just water. The dielectric constant of
the solvent is required. In addition, the averageent molecule radius is necessary to calculate
the solvent accessible surface area. In other wtadger solvents can't approach the solute as
closely and the corresponding solvent accessibbfaciarea is larger. The surface tension is also
needed for the chosen solvent. These calculatiengeay useful for organic mechanisms.

The Generalized Born approximation and more acka electrostatic treatments are also
becoming extremely important in modeling the surgaof proteins and nucleic acitf§The
combination of the partial charges on the amindsam a protein and the polarization of the
solvent can create strong electric fields neasthréace of proteins that may help guide substrates
into the active sites of enzymes and may help bpesteins for efficient protein-protein binding.
In other words, solvation effects have an imporiafiience on molecular recognition.
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Section 9
Classical Normal Mode Analysis: Harmonic Approximaion

The vibrations of a molecule are given by its ndrmades. Each absorption in a vibrational
spectrum corresponds to a normal mode. The founalomodes of carbon dioxide, Figure 1, are
the symmetric stretch, the asymmetric stretch addending modes. The two bending modes
have the same energy and differ only in the dioactif the bending motion. Modes that have the
same energy are called degenerate. In the clas®eafinent of molecular vibrations, each
normal mode is treated as a simple harmonic osmilla

— <« —> <«
0-0-0 0-0—0 6—9—6 O—@—0
Symmetric stretch Asymmetric stretch né Bend

Figure 1. Normal Modes for a linear triatomic maikc In the last bending vibration the motion
of the atoms is in-and-out of the plane of the pape

In general linear molecules have 3N-5 normal @sp@vhere N is the number of atoms. The
five remaining degrees of freedom for a linear roole are three coordinates for the motion of
the center of mass (X, y, z) and two rotationalesmgNon-linear molecules have three rotational
angles, hence 3N-6 normal modes.

The characteristics of normal modes are summecitizlow.

Characteristics of Normal Modes

1. Each normal mode acts like a simple harmonidlatr.

2. A normal mode is a concerted motion of many atom

3. The center of mass doesn’t move.

4. All atoms pass through their equilibrium posisaat the same time.
5. Normal modes are independent; they don't interac

In the asymmetric stretch and the two bending vibna for CQ, all the atoms move. The
concerted motion of many of the atoms is a comni@macteristic of normal modes. However,
in the symmetric stretch, to keep the center ofsncasistant, the center atom is stationary. In
small molecules all or most all of the atoms mava given normal mode; however, symmetry
may require that a few atoms remain stationargémne normal modes. The last characteristic,
that normal modes are independent, means that harodes don’t exchange energy. For
example, if the symmetric stretch is excited, thergy stays in the symmetric stretch.

The background spectrum of air, Figure 2, shinesasymmetric and symmetric stretches and
the bending vibration for water, and the asymmettietch and bending vibrations for €@he
symmetric stretch for CQOdoesn’t appear in the Infrared; a Raman spectsumeéded to
measure the frequency of the symmetric stretchs@ ldsorptions are responsible for the vast
majority of the greenhouse effect. We will also @$8 as an example, below.

The normal modes are calculated using Newtasons of motiort:* Molecular mechanics
and moslecular orbital programs use the same metinmtsnal mode calculations are available
on-line:



61

§ PYE Bend:
R H,O 1595 crit
® 20«5
1szAsymmetric stretch:
16:H,0 3756 crit
1a)
12«;
1;) Symmetric stretch: Asymmetric stretch: Bend:
i H.,0 3652 cnit CO, 2349 cnt CO, 667 cnt*

40-'00 ' ' ' ' 35‘00 ' ' 30‘00 ' ' ' ' 25'OO ' ' ZOE)O ' ' ' ' 1560 ' ' ' ' IOE)O ' SdO
Wavenumbers (cm-1)
Figure 2. The Infrared spectrum of air. This speuatis the background scan from an FT-IR
spectrometer.

Harmonic Oscillator Review

Lets first review the simple harmonic oscillatonrSider a mass m, supported on a spring with
force constant k. Hooke’s Law for the restoringcéofor an extension, x, is F = -kx. In other
words, if the spring is stretched a distance xh8,restoring force will be negative, which will
act to pull the mass back to its equilibrium pasitiThe potential energy for Hooke’s Law is
obtained by integrating

_av_
F=-ax = @
to give V L 2)

In molecular mechanics and molecular orbital catahs, the force constant is not known.
However, the force constant can be calculated trwrsecond derivative of the potential energy.

d’ Vv
The Hooke's Law force is subsgituted into NewtoaWw:
F=ma or n%jaz)S =-kx 4)
and solved to obtain the extension as a functidmud:
X(t) = A sin(2wt) 5)

wherev is the fundamental vibration frequency and A s amplitude of the vibration. Taking
the second derivative of the extension gives

2
% - 412 X (6)
Substituting Eq 6 back into Eq 4 gives:
-41v% m X = -kx (7)

which is the basis for the classical calculatiomhef normal modes of a molecule.
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Normal Mode Analysis

For molecules the x, y, z coordinates of each atarst be specified. The coordinates are:
Atom 1: X, Y1, Z3, Atom 2: %, Yo, 25, etc. ......
The extensions are the differences in the posi@onsthe equilibrium positions for that atom:

Atom 1: % = X; — Xq.eq Y1 =Y1— Yieq 21=21—Z1eq (8)
Atom 2 % = Xo— Xo.eq Yo=Y2—Yaoeq 2 =2o— Loeq
Atom i: % = Xj — Xieq Vi = Yi— Yieq Zi =2 — Zeq

Where Xeq Yieq and Zeqare the equilibrium (energy minimized) positions &tom i. For
example, if X, y;, and z are all zero, then atom 1 is at its equilibriunsifon. Molecular
mechanics or molecular orbital calculations arelusdind the potential energy of the molecule
as a function of the position of each atom, V&, z1, X2, Vo, Z2, X3, Y3, Z3,++-,XN,YNsZN)-

The second derivative of the potential energy ban be used to calculate the force constants,
Eq 3. However, there are now 3Nx3N possible secaniyatives and their corresponding force
constants. For example,

v 11
6_x12 =Kyx )
is the change of the force on atom 1 in the x-dimacvhen you move atom 1 in the x-direction.
Similarly,
v 12
oxys kxy (20)

is thechange of the force on atom 1 in the x-directiomwkou move atom 2 in the y-direction. The
various types of force constants are shown in Ei@ur

haY kll ) directi o 9
= same atom same direction = W
9 x° XX Har

AV 11 ! (2)
——=kK same atom same direction '

v 11 A\
OXayr kxy same atom different directions

v 12 ~
PV Kyx different atom same direction

v 12 . L
——=k different atom and direction "

&

2
oxi0y> %Y S

Figure 3. Types of second derivatives and forcesi@mnis

These force constants are not the force constanisdividual bonds, they are force constants
for the motion of a single atom subject to allnesghbors, whether directly bonded or not. The
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complete list of these force constants is calledHkssian, which is a 3Nx3N matrix. Eq 7 is
then applied for each force constant.

42 e b B2 12 AN 1
- WX1= -Kyx X1~ KyyY1- KxzZ1 - KyxX2= KyyY2=...=KyzZn (11)

Tl2V2 _ 11 11 11 12 12 IN
-4 Myy1= 'kyxxl - kyyyl - kyzzl - kyxxz - kyyy2 - kyZ ZN

1'[2\)2 _ 21 21 21 22 22 2N
-4 MpXo= - XXXl - kxyyl - kXZZ]_ - kXXX2 - kxyy2 P kXZZN

) NL N1 N1 N2 N2 NN
-4T0V? MNZN= Ky X1 - kzyY1-Kzyzi-KzyXa-Kgyya-...-kzz 2n

In words, the right-hand sides of the above equatgimply state that the total force on atom i is
the sum of the forces of all the atoms on atom addition, we need to keep track of the x, y,
and z directions for each atom. There are a t6taNa3N terms on the right. All these terms are
confusing. A simple example will help at this point

For our example consider a symmetrical lingatdmic molecule that can only vibrate along
the x-axis, Figure 4. CQs a good example of a symmetrical linear triammi

<> <> <>
7~ I I~ >
U]_ \-’2 U3 X

Figure 4. A symmetrical triatomic molecule with ralions limited along the internuclear axis.

Because we have limited the vibrations to the xsaxhich is the internuclear axis, this model
will provide the symmetric and asymmetric stretchinodes, only. Egs 11 then reduce to

-4Tl2V2 M X1= -k)];:)l(Xl - k)]j(X2 - k)]j(XQ, (12)
) 21 22 23

-ATPV? MpXa= Ky X1~ Ky X2 -Kyy X3 (13)
) 31 32 33

~AT0V? MeXa= -Kyy X1 - Kyy X2 = Kyy X3 (14)

since we only need to keep the x-terms. Severaknigal techniques are available to solve linear
sets of simultaneous equations such as this. Ctiomatly, however, the problem is simplified
by converting to mass weighted coordinates, for exampl

):1 :’\/ml X1 )Zz :‘\/mz Xo , etc. (15)
and mass weighted force constants:
12
~12 Ky

N (16)

X
ko=
XX Imn/m,

In the new mass weighted coordinates, Eqs 12-1dmec
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~ 11~ T12~ T13~

ATV X1 = -Kyy X1 = KyyX2 = KyyXs (17)
~ 21~ T22~ 23~

ATV Xo = -Kyy X1 - KyXa = KyyXa (18)
~ 31~ 32~ 733~

-ATOV Xg = -Kyy X1 = KyyX2 = KyyXa (19)

For example, we can show that Eq 17 is equivatekigt 11, by substituting Eqs 15 and 16 into
Eq 17.

11 12 13
k k k
i 2 _ XX i XX i XX
ATV X = < M X - e me e - el ms s (20)

Canceling mass terms and multiplying both sideg/iny gives Eq 11.
Eq 17-19 are most easily written in the equinateatrix form:

/ 11 12 13 \

kXX kXX kXX
mafme Ama/mp AImnfms | -
X1 X1
k21 k22 k23
Jmnfm: majms  Jmayms || & )
k3 1 k32 k33

N mafm me/m;  Jmams /

The mass weighted force constants give a symnmaatax. In other words, the corresponding

off diagonal elements are equal. Eq 21 is an eigeeveigenvector equation. The eigenvalues
are the negative of the squared normal mode freze®nl he eigenvectors are the mass weighted
normal coordinate displacements (see Appendix).\Mdiicient algorithms exist for solving
eigenvalue equatiorfs.

The Hessian and Energy Minimization The matrix of force constants is the matrix of the
second derivatives of the potential energy. Thigrimnes also called the Hessian. The Hessian
also plays a central role in energy minimizatiochtéques. The equations in Section 4: “Energy
Minimization” apply to one-dimensional systems. Raolecules, we must find the x, y, z
coordinates of each atom, for a total of 3N coatés. To minimize the energy for these 3N
coordinates, the equations in Section 4 are agtuaitten in terms of the Hessian, instead of a
single force constant or the second derivativdhefanergy for the x-coordinate alone. The use of
the Hessian is necessary to minimize the energyl tiie atoms in the molecule.

Numerical Example for Carbon Dioxide
The CQ example will provide some insight for understaigdiig 21. First, we need to discuss
units. The fundamental vibration frequency for an@nic oscillator is

1 k k
o or 4tvi=— (22)

Vo o \/ m
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with k in N mi* an m in kg molecul& Normally, vibrational spectra are plotted verses
wavenumber, instead of frequency. To convert toamambersy :

~ 1 C -~
v =3 or v = X" o (23)
If v is in cm?, ¢ should be given in cm'sUsingv in cmi* and m in g mét, Eq 22 becomes:
4Pk
1000 g/kg M " m (24)
or solving for the frequency squared in wavenumigerss a convenient conversion factor
~ _ kim 25
V =5 .8921x10 (25)

Now for our example. The G@tretches are experimentally measured to be 134 Cfar the
symmetric stretch and 2349 ¢for the asymmetric stretch, Fig. 2. Lets roughly gave can
calculate these values through a normal mode dsalgsg our simplified one-dimensional
model. First we will need all the force constaktewever, some force constants are related by

symmetry, since the left and right hand sides efrtiolecule are the same.
11 33 12 23
By symmetry : £ = Kyx Ky = Ky (26)

The terms that exchange the atom labels are alseadgnt, since atom 1 interacting with atom 2
gives the same result as atom 2 interacting widmét. In matrix terms, these corresponding off-

diagonal terms are equivalent for a symmetric matri

_ 12 21 23 32
Symmetric matrix: ¥y = Kyy Ky = Kyx (27)

These equivalences leave four force constantsmbateed to guess. First focus on atom 1. By
trial an error, a good guess for

11 )
Kyx = 1600 N mt (28)

This force constant gives the restoring force amat is moved. The resorting force, F = -kx,
will be negative, pulling the atom back to its difium position. Another way to state this is if
atom 1 is moved forward to shorten the bond letiggih atom 1 will try to move back to keep

the bond length constant. A reasonable guess for
12 11

Kyx = -Kyx (29)

Here the 12-force constant is negative, and theniag force, F = -kx, is positive. This positive
force results because as you move atom 1's neighbam 1 will try to follow along in the same
direction to keep the bond length constant. Thelabs value of the two force constants is the
same since moving either atom 1 or atom 2 hasaime ®ffect on the bond length and, therefore,
the force on atom 1. Now focus on atom 2. Lets gtieat it is twice as hard to move atom 2 as it

is to move atom 1, since moving atom 2 effects Invods:

22 11 )
Kyx = 2 Ky = 3200 N it (30)

Finally, we will assume that

13
K = O (31)
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We assume that atom 3 doesn’t affect atom 1 sagmfly because the two atoms aren’t directly
bonded. Substituting Eqs 26-31 into Eq 21 givesihss weighted force constant matrix. The
row and columns correspond to the three differearha, Q, C,, and Q, respectively.

O ) Q

1600 1600 0
Ou | Vis/ie ~is/iz 100 11547 0

1600 3200 1600
Co-| “iNte viNT yinie |=| L1547 -266.67 1154 (30)
0s 1600 1600 0 11547 -100

0 Jieyiz ieyie

The “eigen” Web applet is available to solve ttgeeivalue problelComputer algebra
programs like Maple and Mathematica are also h&mdsgolving eigenvalue problems. The
output of the “eigen” applet is shown below. Thgesivalues are listed with “E=."” The normal
mode frequencies are easily calculated using tiie aonversion factor from Eq 25.

Eigenvector 1: E=-0.0009769630

0.603024
0.522229
0.603024 Symmetric stretch:
Eigenvector 2: E=-100 100
-0.707107 V= = il
0 Y 5 892x10° 1303 cm
0.707107 ; .

; Asymmetric stretch:
Eigenvector 3: E=-366.669 y 366.67
-0.369272 S : _ <1
0.852805 V=1\/5.892x1¢° = 2495 ¢m
-0.369272

(for about 5% errors)

The three numbers below each eigenvalue aneditmeal coordinates. For example, the normal
coordinates for the second eigenvector show at¢®.707) moving in the opposite direction as
atom 3 (0.707), while atom 2 remains stationary F0y the CQ@example we have motion only
in the x-direction, so there are only three coaaths listed, one for each atom. In general to
display the motion of the atoms during the vibnatithe atom coordinates are calculated for
atom i as:

X; Vi z;
X; :Xi,eq+ﬁq Yi :Yi,eq+ﬁq Z :Zi,eq+ﬁq (33)
| | |
where q = sin(Bvt). For example, for the asymmetric stretch for,@@ the first O atom,
-0.369 .
X1 = Xi,eq +W sin(2vt) (34)

The first eigenvalue is zero, because it cooedp to the motion of the center of mass of the
molecule in the x-direction. You can also tell tha first eigenvector is for the motion of the
molecule as a whole because all the normal coaelrtaave the same sign, that is all the atoms
are traveling in the same direction. For fully #udimensional problems, the first 5 eigenvalues,
for linear molecules, or 6 eigenvalues, for nordineolecules, will correspond to translation and
rotation. (Spartan, however, doesn’t show you tlieseeigenvalues, but other programs do.)
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You can tell that eigenvalue 2 is for the synmmedtretch, since the normal coordinates for the
oxygen atoms are opposite to each other (i.e —aR@7.707 respectively) and the carbon atom
doesn’t move. In the asymmetric stretch, eigenvad|ube oxygen atoms move backward while
the carbon atom moves forward.

How well did our simplified model work? The syratric stretch is a little low and the
asymmetric stretch is a little too high for a conda error of about 5%. It doesn’t make sense to
try to get the results to agree any better. We n@gbected the bending vibration in our
treatment, and using a molecular mechanics or mlaeorbital program is much more accurate.
However, you should try changing the force consgaisses a little to see the effects of each
force constant. If you make a change that is nosistent with the force field in a real molecule,
then the first eigenvalue will increase. Bettes s#tguesses give a smaller first eigenvalue.

Normal Mode Analysis and Molecular Mechanics and Mtecular Orbital Calculations

Our simple example of CQs not representative of the accuracy availabigfedicting normal
mode frequencies. Molecular mechanics and moleculatal calculations can quite accurately
predict the frequencies for the vibrations of coexpinolecules. Results for G@re given in
Table I. If you haven’t gotten to molecular orbitaéory yet, suffice it to say that you can
calculate normal mode frequencies quite accurdtely.

Table I. Molecular Mechanics and Molecular Orbalsed Normal Mode Analysis for GO

HF/ MP2/ B3LYP/
Literature MMFF  AM1 PM3 6-31G*  6-311G** pBP/DN* BP/DN*  6-311G(d)
667 538 526 522 744 656 637 638 666
667 538 526 523 744 656 637 638 666
1340 912 1480 1408 1518 1344 1323 1319 1377
2349 1746 2565 2387 2585 2461 2363 2349 2438
error % 24.1%  155%  125%  11.6% 2.1% 2.7% 2.5% 1.7%

The MMFF molecular mechanics calculation pooegresents the accuracy for molecular
mechanics in general, since the force field pararsetren’t optimized for the unusual C=0
bonds in CQ. Molecular mechanics calculations are common amng useful for large
biomolecules. Semi-empirical calculations at the JAtM PM3 level are more accurate. Hartree-
Foch, HF, calculations are even better, especidign MP2 electron-electron correlations are
taken into account. Density functional methods pB#, BP or B3LYP are now the best choice
for careful analysis. Molecular orbital calculatoare indispensable for helping to assign the
vibration bands in Infrared and Raman spectroscopy.

Anharmonicity

The proceeding discussions assume all the vibiaoa purely harmonic. Our treatment of
molecular mechanics force fields showed that anbaiorcorrections are often important for real
molecules. What is the effect of anharmonicity drational spectra and normal mode
calculations? For weak anharmonicity, vibrationméara also show overtones and sum and
difference bands. Overtones are at integer mugtipfehe fundamental frequency# Sum and
difference bands occur @i+ Vg , andva- Vg, respectively. Frequencies fraah initio molecular
orbital calculations are normally multiplied by @®correct for anharmonicity. In Table I, if the
HF/6-31G* values are multiplied by 0.9, the averdgeiation drops to 1%. Frequencies from
molecular mechanics are usually too approximateaiwant anharmonicity corrections when
comparing with vibrational spectra.
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For strong anharmonicity, such as occurs foy l@se and floppy vibrations, a more refined
treatment is necessafySuch vibrations include bond torsions that havedoergy barriers,
ring vibrations in large ring systems, and vibraion hydrogen-bonded systems and molecular
complexes. Unfortunately, such vibrations are oftenmost interesting, especially in studies of
proteins and nucleic acids. Treating very flexilbdey energy vibrations in biomolecules is an
active area of current study™®

Vibrations and Thermodynamics

Vibrations increase the Gibbs Free Energy of atanis. Vibrational enthalpy and entropy
calculations are very useful in drug discoverydssessing the Gibbs Free Energy of binding.
Vibrations also play a central role in protein falgland protein flexibility:>*> The contribution
of a vibration to the enthalpy and entropy of assabce is given By

y 1 Nah Nahvg ehvo/kT
vib =75 Na Vo + 1-eVo/kT (35)
i Nahvg €hvoikt
Sip =R In(1-€MVolkT ) + = (36)

T (1-€hvoi)
where M is Avogadro’s numbeny is the frequency of the normal mode, h is Planckisstant,
and k is Boltzmann'’s constant = RYNI'he %2 Nhvg term in the enthalpy is the zero-point
vibrational energy, which is the energy of the atimn at absolute zero temperaturg,(@). Eqs
35 and 36 are summed for each normal mode vibrd&ollowing a normal mode analysis, then,
it is very easy to calculate the Gibbs Free Enefgysubstance.

A specific example will help to clarify the imgpance of normal mode analysis in
thermodynamic considerations. Consider two diffecemformations of a molecule, A and B:

AZB (37)

Examples include the trans and gauche isomerstahblor two conformations of a large
protein. For low frequency vibrations Eq 36 simipkfand the entropy difference reducé$ to

_ 2TlVA1 2TlVA2 2TlVA3
AS\/ib,conf— R |n(2anl 2TlVBz 2TlV|33 ) (38)

This entropy difference is called the configuratibaentropy difference. The numerator is the
product of the low frequency normal modes for Ad #me denominator is the product of the low
frequency normal modes for B. Therefore, if B hagdr frequency modes, the entropy of B will
be larger and the entropy difference will favodiBother words, the lower the mode frequencies,
the more the conformation can rattle around, ardrbre that conformation is favored.

In molecular mechanics the enthalpy of formatda molecule is given as (see Section 2:
“Enthalpy of Formation”):

AfH® =%,RT +°,RT + RT + bond energy + steric energy + vibratiormitributions (42)

Normal mode analysis gives us the tools to caleula vibrational contributions directly using
Eq 35. However, as mentioned in Section 2, for MMRulations a series of approximations are
made for Eq 41. The zero point energy is oftenewgt in classical simulations, leaving the
temperature dependent contribution from the setemd of the vibrational enthalpy, Eq 35. This
contribution to the enthalpy is plotted as a fumetof vibrational frequency in Figure 5.
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Figure 5. Contribution of a vibration to the Enthabf formation of a molecule, above the zero
point energy, at 298K.

The contribution of vibrations becomes negligilie frequencies greater than about 500'cm
Therefore, only low frequency vibrations contribateongly. Torsional motions around freely
rotating bonds are often the lowest frequency nbmwales in molecules. Other low frequency
vibrations are often ignored. The vibrational cdnitions can then be approximated by torsional
increments for each freely rotating bond, giving tasult presented in Section 2:

AfHe =3,RT +°,RT + RT + bond energy + steric energy + torsionatéments (42)

Our treatment of normal modes now will allow usltecuss these approximations in detail.
Examples of low frequency vibrations are bendirngations and ring vibrations as well as freely
rotating bond torsions. Clearly for careful cald¢idas more contributions than just the torsional
increments for freely rotating bonds are necessargddition, Eq 42 completely neglects the
zero point energies. Molecular orbital and molecaoiachanics programs readily provide these
thermodynamic contributions when normal mode arglyse done, so we don’t need to make
the extreme approximations inherent in Eq 42.

Molecular Dynamics and Normal Mode Analysis
Molecular dynamics and normal mode analysis aléyrgaite similar. Both include the kinetic
and potential energy for the molecule. The foreddfis the same. They both calculate the
Hessian and then integrate Newton’s Laws of mofi¢tre motions that you see in molecular
dynamics simulations are in fact the normal modeéke@molecule. The fluctuations of the atom
positions in a molecular dynamics run can be usextract the normal mode frequencie®

The difference between molecular dynamics amchabmode analysis is that the equations of
motion are integrated numerically in dynamics semiohs, but sinusoidal solutions are assumed
for normal mode analysis. In addition, in molecugnamics the motions of all the normal
modes are studied simultaneously, while in normadienanalysis one mode is studied at a time.
The techniques have their strengths and weakndsges.35 and 36 show that the link between
normal mode analysis and thermodynamics is diredtstraightforward. Thermodynamic
properties can be calculated from dynamics runispadicular care must be taken to ensure
adequate statistical sampling (i.e. using long tamneulations). On the other hand, molecular
dynamics more easily handles anharmonicity andi@kpblvation.
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Valence Force Field Solutions
Normal mode analysis is particularly important inlectular spectroscopy. As a consequence,
valence force field solutions have been workedf@umany small molecule geometries. These
solutions take a different approach to the probl€ne force constants that are used are the force
constants for individual bonds, rather than thedaronstants for moving atoms, e.g. Eq 9.
Focussing on the bond force constants more clesehgsponds to our “chemical intuition.”
Another advantage of valence force field calcutaics that algebraic solutions can be written.
For example, for a symmetric triatomic moleculeewehm = mg, the internal coordinates are
defined as

Gh=Th2—1" (43)

Qx=T23—1

0=0-0,
The q’s are bond stretching terms &nd the bond bending termpis the distance between
atoms 1 and 2,1is the equilibrium bond lengtB,is the bond angle, arij is the equilibrium
bond angle. The potential energy is chosen as:

1 1
V=§k1qlz+§k1qZ2+k562 (44)

The k force constant is for stretching the 1-2 or 2-Bdid=or CQthis is the C=0 stretch. The
force constant for bond bending is Khe Hessian second derivatives can be obtainéaking
explicit ggrivatives of Eq 44. For this potentialeegy form the normal mode frequencies are
given by

2m 0,) k
2 _ £ 2P| AL
ATV 45y = (1 +Tn, S 2) m: (45)
2my 0,) k 2 2my . ,00) ks
417 (vsym2 + vbndz) = (1 +W2 Cogio) Hll + ™ (1 +W21 Si 70) T2 (46)
2mp) k k5
161! (Vg Vond) = 2 (1 +—m21) izt @7

Eqgs 46 and 47 show that the frequency of the synersttetch depends on the bending force
constant. As mentioned above, our example for emeasional CQdidn’t include this effect.
The disadvantage of algebraic solutions isttiey depend critically on the details of the
potential energy function, e.g. Eq 44. If a strébeimd interaction or Van der Waals terms are
included, as in many molecular mechanics forcel$iethen Eqs 45-47 are no longer valid. In the
early decades of vibrational spectroscopy, it wgsel that solutions to the normal mode
problem could be used to determine the force catsstar individual bonds, as in Eq 44.
However, the dependence of the force constantsidmaver-simplified potential energy
functions causes large errors. The attempt to ekterbond force constants directly from spectra
has therefore been abandoned. Equations such 4 édn still be useful in building our
intuition about bond strengths, however the derfeede constants must be treated as very
approximate and can sometimes be misleading.
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Appendix
We wish to show more clearly the relationship betwEqgs 17-19 and the normal coordinates,
for the curious. First note that substituting EqQte Eq 7 gives:

-41%v% m A sin(2wt) = -k A sin(2wt) (48)
Dividing both sides by the sin gives
-AvPmA= kA (49)

In other words, the equation applies to the timgedelence of the vibration and also to the
amplitude of the vibration separately. Therefore EB-14 and 17-19 allow us to solve for the
amplitudes of the vibrations, whergyx z can be read as the amplitudes of the waves ir, the
and z directions for atom i. Similarly, %,z can be considered to be the corresponding mass
weighted amplitudes. The time dependent valuethere

Xi() = X sin(Zvt) v =i sin(wt)  z() =z sin(2vt) (50)

Dropping the “(t)” for convenience and convertirachk into non-mass weighted coordinates
gives:
Xi =\/_Lrln sin(2wt)  yi= \/——% sin(2wt)  z :\/% sin(2rwt) (51)
| | |

Converting from extensions into final coordinatesg Eq 8 gives Eq 33.

Now you may have noted that Eqs 17-19 involwe fmknowns\, X; i , and z ) but only
three equations. So to obtain unique solutionsesmmore information is necessary. We must add
the requirement that the center of mass can’t move:
MiX1 +MoXs + MeXz = 0 (52)
or equivalently in mass weighted coordinates:

\mMixy sAfmaxz +4/maxs =0 (53)
As we solve for each successive normal mode wergded to ensure that the vibrations don’t
interact. Mathematically this requires that themak modes are orthogonal. For each pair of
normal modes A and B, with normal coordinatgsandxs , respectively:

X1A X1B + X2A X2 +X3aX3g = 0 (54)
Taken together, Eqs 17-19 and Eq 53 and 54 prakelenique set of normal modes satisfying
the desired characteristics set out in the introdocSolving these equations as a linear set of
simultaneous equations is difficult. Luckily, salgithe problem as an eigenvalue-eigenvector
equation using Eq 21 automatically satisfies tlggliirement for orthogonality.

Literature Cited:

1. Moore, W. J.Physical Chemistry, 4" Ed., Printice-Hall: Englewood Cliffs, NJ, 1972, Chapte
17, Sec. 14., pp 775-776.

2. Wilson, Jr., E. B.; Decius, J. C.; Cross, P.Mhlecular vibrations; the theory of infrared and
Raman vibrational spectra, McGraw-Hill, New York,1955

3. Herzberg, GMolecular Spectra and Molecular Sructure 1. Infrared and Raman Spectra of
Polyatomic Molecules, Van Nostrand, Princeton, N. J., 1945.



72

4. Shoemaker, D. P.; Garland, C. W.; Steinfeldl, Nibler, J. W. Experimentsin Physical
Chemistry, 4™ Ed., McGraw-Hill, New York, NY, 1981, Exp. 40.

5. ComSpec3DGasteiger, J., Computer-Chemie-Centrum, UniverEitiingen-Nurnberg,
http://lwww2.ccc.uni-erlangen.de/services/vrmlviblex.html (accessed 2/2003).

6. Distance geometry and Huckel molecular orbltabty are other examples of eigenvalue
equations. Hartree-Foch molecular orbital calcategj such as you do in Spartan for HF
methods, are solved as eigenvalue equations.

7. Colby College Physical Chemistry Home Pasigen,
http://www.colby.edu/chemistry/PChem/eigen.htmicgssed 2/2003).

8. After correcting the experimental frequenciasdioharmonicity.

9. The symmetric stretch of G@& shifted slightly because of a Fermi resonanitle tle first
overtone of the bending vibration. So exact agregmse’t expected without the resonance
correction.

10. Pitzer, Kenneth S., Quantum ChemisBsentice-Hall, New York, NY, 1953, pp 239-243,
Appendix 18, pp 492-500.

11. Walther, M.; Plochocka, P.; Fischer, B.; Helm bhd Jepsen, P'Collective vibrational
modes in biological molecules investigated by terghtime-domain spectroscopy”
Biopol ymer s(Biospectroscopy), 2002,67(4-5), 310-313.

12. Hamm, P; Hochstrasser, R M., "Structure ancuyos of proteins and peptides:
femtosecond two-dimensional infrared spectroscopsatt. Soectrosc., 2001, 26, 273-347.

13. Karplus, M.; Kushick, J. N., “Method for Estitmay the Configurational Entropy of
Macromolecules,Macromolecules, 1981, 14, 325-332.

14. Van Vlijmen, H. W. T.; Karplus, M.,. “Analysi Calculated Normal Modes of a Set of
Native and Partially Unfolded Proteing,’Phys. Chem. B, 1999 103(15), 3009-3021.

15. Levy, R. M.; Srinivasan, A. R.; Olson, W. K.c®ammon, J., “A Quasi-harmonic method
for studying very low frequency modes in proteirigpolymers, 1984 23(6), 1099-112.

16. Schwarzl, S. M.; Tschopp, T. B.; Smith, J.Fscher, S., “Can the Calculation of Ligand
Binding Free Energies Be Imporved with Continuuniv8ot Electrostatics and an Ideal-Gas
Entropy Correction?J. Comp. Chem, 2002 23,1143-1149.

17. McQuarrie, D. A.Satistical thermodynamics, Harper & Row, New York, 1973.

18. Rempe, S. B.; Jonsson, H., “A Computationalr&ige lllustrating Molecular Vibrations and
Normal Modes,"Chemical Educator, 1998 3(4), 1-17.



73

Section 10
Partial Atomic Charges

No issue in molecular mechanics is more probtenoa contentious than the determination of
partial atomic charges. Atomic charges enter theeffield through the Coulomb potential (see
Section 1 Eq. 9)

_kQQ
q.ij — N 1
4TE 1jj

Partial atomic charges also are critical in contmwelectrostatic solvation treatments. Partial
atomic charges assigned by different methods ame fieelds vary widely. Most force fields
assign charges based on tabular values. Moleciidaltreatments calculate partial atomic
charges using several different charge models ppoegiate the problem, Table 1 lists the
charges assigned by force fields or calculated bligcular orbital methods for the chlorines in
1,1,1-trichloroethane. Chemical intuition would @eghat the Cl partial charges should be rather
negative. The table shows that even the sign opdntal charge on Cl, a very electronegative
atom, is in dispute.

Table 1. Partial atomic charge on Cl in 1,1,1-tochbethane. The force field based charges are
derived from MOE, the semi-empirical charges anenfiMOPAC, theab initio charges are from
Spartan, and the DFT and AMBER charges are fronsSan.

Level | Method | Phase | ClCharge
MMFF94 Tabular, empirical gas -0.290
CHARMM2.2 Tabular, empirical aqg -0.153
OPLS Tabular, empirical aq -0.154
AMBER (6-31G(d)) ESP(Merz-Kollman/Singh) gas ®01
AM1 Mulliken gas -0.049
PM3 Mulliken gas 0.014
PM3-ESP ESP gas -0.09
3-21G(*) Mulliken gas 0.06
3-21G(*)-ESP ESP gas -0.14
6-31G* Mulliken gas 0.03
6-31G*-ESP ESP gas -0.14
DFT (B3LYP/6-31G(d)) ESP gas -0.029
Gasteiger, PEOE Empirical gas -0.084

So what's the problem? Why are partial chargesas o calculate? The problem is that while
partial atomic charges are very intuitive, they'tozally exist. Partial charges are simply models
of the true electrostatic potential energy in moles. The partial charge is an effective charge
placed on the nucleus of each atom that approxsihteelectrostatic potential around the
molecule. In real molecules the electrostatic piaeenergy is determined by the localized
positive charges on the nuclei and the very deloedinegative charge of the electrons as they
occupy their molecular orbitals. Therefore, partisdrges cannot be determined experimentally.
There is no model possible that uniquely determihesest set of partial charges
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Molecular Orbital Partial Charge Methods

There are two general ways to calculate pastiatges from molecular orbital calculations,
population analysis and electrostatic potentiglE$P) calculations. The Mulliken procedure is
the most common population analysis techniqueofufation analysis, the electrons in each
molecular orbital are partitioned to each atom Basethe probability that the electron is in an
orbital on that atom. At the end of the calculatibe fractional occupation for each molecular
orbital is summed to get a total atomic electropydation for each atom. As can be seen from
Table 1, Mulliken population analysis can give festhat are "unintuitive." That is, since there
is no unique method for calculating partial charge,can't say that the Mullikin values are
wrong, we can simply state that in some circumssitice Mulliken values don't look like they
will be useful. As an alternative, the careful gsa of electrostatic interactions can be used.

In molecular orbital calculations, the electatist potential field of a molecule is determined by
moving a positive test charge around the molecotecalculating the potential energy of
interaction based on the molecular orbitals. Etestaitic potential fits assume that the real
electrostatic field of the molecule can be mod&egartial charges placed on each nucleus. The
fitting procedure uses a least squares approaatijtst the partial charges to get the best
agreement with the molecular orbital-based eletdtmspotential field. ESP calculations usually
give results that are in agreement with chemidaition, Table 1.

Unlike other force fields, AMBER was designedige explicit molecular orbital calculations
to derive charges instead of tabular vafti€ae charges in AMBER are to be calculated for each
specific problem at the HF 6-31G* level using a ified ESP procedure (In Gaussian
Pop=MK). However, the results in Table 1 show g@mhetimes the modified ESP procedure
used for AMBER charges can give "unintuitive" résusimilar to Mulliken population analysis.
AMBER has been very successful for studies on pretd his ESP based approach is awkward
to implement in a general-purpose program becdusequires a preliminary molecular orbital
calculation. General-purpose programs get arousdtioblem by supplying a table of charges.
MOE uses PEOE charges for AMBER by default.

Partial Equalization of Orbital Electronegativity (PEOE)

The calculation of ESP based partial charggsng time intensive. Many authors have
developed empirical procedures that seek to repmdwlecular orbital based charges but in a
much shorter period of time. In addition, like ES#culations, a measure of partial charge that is
not entangled in the details of a specific foretdfis also desirable. The most popular of these
techniques is called Partial Equalization of Oildizctronegativity (PEOE) or the Gasteiger
method® One of the important failings of any tabular baapgroach is that the assigned charges
will not be sensitive to the molecular environmehthe atoms in a given functional group. The
PEOE method was designed to take the molecular@maent into account by allowing atoms
many bonds apart to influence each other. PEOEjebare very popular and are widely used as
QSAR descriptors.

In General Chemistry, the electronegativity wfadom is taken as fixed. However, shouldn't the
electronegativity, the "hungriness of an atom feceons", vary as electron density is donated to
or withdrawn from an atom in polar covalent bon8s¢®uldn't electronegativity also depend on
the hybridization of the atom? The answer to bdtthese questions is yes. The basic model in
PEOE is that the electronegativity of an atom iMalance v is charge dependent:

Xiv(@) = a + by Q + 6, @ 2
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where @ is the electronegativity of the neutral atom, whi| and ¢, are fit coefficients to
reproduce the experimental values of the electratngty for positive ions (Q = +1) and negative
ions (Q = -1). For example, the electronegativitydn sp hybridized carbon is:

xC6P¥= 708 +9.18 Q + 1.887Q 3
and for an spcarbon:
XC6PP=879+9.32Q + 1.517Q 4

In other words a carbon with a positive partialrgeas more electronegative than a neutral
carbon. Also sphybridized carbons are more electronegative tpariThie units of
electronegativity in Egs. 3 and 4 are in kcal/mud are not scaled to match the Pauling scale of
4 for fluorine.

The tug-of-war for electrons between atoms ilapoovalent bonds will tend to equalize the
electronegativity of the two interacting atoms. Erample, in a C=0 bond, the O will withdraw
electron density from the C. A partial positive ideawill develop on the C and a negative charge
on the O. The positive charge on the C will incesthee electronegativity of the C making it
harder for the O atom to withdraw more electronsitgnwhile the negative charge on the O will
decrease its electronegativity making the O lepsalai@ of attracting more electron density. At
first it was expected that the final charges waddalize the electronegativity on the two atoms.
In other words both atoms would end up with theeatactronegativity so there would be no
impetus for further transfer of electrons. Howewewas found that this complete equalization
overestimates the charges. Complete equalizatieteofronegativity overlooks the parallel
changes in the size of the atomic orbitals and therlap.

The key to the PEOE approach is to calculasiiterative way the final charge on each atom
based on the partial equalization of electronedgtiVhe method is designed to correlate with
experimental measurements that depend on chargelalliden population analysis. In the first
iteration the charge transferred between two aticansl j is

_Xi-Xi(d
TN (2) >
where we assume that i is more electronegativejthady’; is the electronegativity of the
positive ion of j. The factor of ¥z is called thengi@ing factor, which prevents the total
equalization. The electronegativities of the at@mesthen recalculated with the new charge. In
the second iteration the additional charge trarsdeis calculated from
_ Xi-Xi(1)2
97 ¥ @ >
This time the damping factor is increased to ¥ damtpe transfer of electrons even more. This
process is continued for five total iterations,leime decreasing the damping factor by another
factor of two. For iteration the additional charge transferred is calculated as
_ Xi-Xi (1)
97X (2) °
This procedure is done at each iteration for aliret bonded to the atom of interest. Each
iteration brings in the influence of all atoms dywnd further away. So after five iterations atoms
five bonds apart have an influence on each othez.pFinciple advantage of the PEOE procedure
is this ability to more fully take into account thending environment of an atom. Another
important advantage is speed. PEOE charges cerngidt with chemical intuition, see Table 1
and Figure 1 for examples. PEOE charges are arfggovement over Mulliken based values.
However, PEOE values are smaller than ESP valupshacharges used in force fields like
CHARMmM and OPLS that are designed to be used foe@as simulations (see below).
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Figure 1. Partial charges for ethanol assigned MAR, HF 6-31G*-ESP, CHARMm, and
PEOE. The methylene H's are equivalent

Aqueous Based Charges for Biomolecular Simulation

Population analysis and ESP based methodstd&a'intermolecular-interaction energies into
account So not surprisingly, the Mulliken and ESP appresctail in reproducing solvation
energetics and interaction energies. Several nforeg fields take a completely empirical
approach based on experimental measurements aftieol\energetics and careful molecular
orbital (HF 6-31G* level) calculations on intermolgar interaction energies. CHARMm and
OPLS force fields are examples. CHARMm and OPLSparameterized to be useful for
inclusion of solvation energetics in aqueous systérhe effect of aqueous solvation is to
stabilize partial charges through charge compemsati the bulk of the solvent (see Section 8).
Therefore, it is not surprising that CHARMm and (Phased charges tend to be larger than gas
phase methods. These charges, however, are ne¢fas for gas phase or nonagueous solvents.
These force fields are tailored to proteins andeia@cids and are not as good at the varied
functionality found in small organic molecules. Bonall organics MMFF excels.

The charges used in MMFF are also completelyigcapand are essentially tabular in style,
which once again lacks flexibility for considerittfough-bond environment effectghe
MMFF charges are also not optimized using solvagioargetics, and so are essentially gas
phase.

What's a modeler to do?

OK, why is this important? Historically the firsiolecular mechanics calculations on proteins
used partial charges calculated by Del Re basédusiiken population analysi3® These
charges were tabulated by Del Re and widely usedvariety of programs. The charges used by
some modern force fields are closely related tmtiginal Del Re values, at least in spirit. These
force fields do a good job of predicting molecudructure. However, the partial charges are not
the best values for studying molecular recognitiofor solvation energetics. So why not use
better partial charges within these force field0Athe parameters are interdependent in a
force field. So changing the partial charge assigmsiwill also change the optimal values for
the other parameters in the force field. With a&decharges, the force field may not reproduce
experimental geometries well.

AMBER uses a better charge model, but requimgsitial long molecular orbital calculation.
Newer force fields like CHARMm and OPLS are regéared to aqueous simulations of
proteins. What do you do about gas phase or nooagus®olvents?
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People will continue to argue about the best@gugh for years to come. Some practitioners
argue that ESP or PEOE based charges should abgaysed in molecular mechanics and
dynamics. On the other hand, Halgen, the authtdMFF, cautions that using PEOE charges
with the MMFF force field will tend to underestineaintermolecular interactions and in general
PEOE charges don't work well for the MMFF forcddieIn general it is probably best to stick
with the native charge assignments when doing tstrestudies or explicit solvation studies.
However, it is probably advisable to use ESP clsafgecontinuum dielectric solvation
treatments. Donald Truhlar's recent advances itiraaum solvation in the molecular orbital
context are a case in point. The major differemcele various levels of theory for continuum
dielectric calculations, e.g. SM5.4 verses SM® ithe development of better partial charge
models. PEOE will continue to be an important foolQSAR studies and has the advantage of
being based on an appealing intuitive model.
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