
Handin 8: Thermochemistry; Entropy, Temperature, and Heat Transfer; Entropy Applications 
 
1.  Nitrous oxide, N2O, can act as a ligand in transition metal complexes. The infrared stretching 
frequencies for N2O are used to judge the strength of coordination to the metal. Nitrous oxide is 
also an important component of the atmosphere. The isotopic composition of nitrous oxide is a 
useful marker in atmospheric photochemistry. Nitrous oxide can be thought of as a resonance 
hybrid among: N-=N+=O ↔ N≡N+–O-

↔ N–N-
≡O+.  N2O is isoelectronic with carbon dioxide. 

As such N2O is linear and has a symmetric (ν~1 = 1285 cm-1) and an asymmetric (ν~3= 2223.5 cm-

1) stretching mode and two degenerate bending modes (ν~2 = 588 cm-1). Using valence force field 
techniques, the force constants for the NN and NO bonds in nitrous oxide have been estimated to 
be 1790 N m-1 and 1140 N m-1, respectively. (a). Use these bond force constant estimates and 
MatLab, Mathematica, or the “eigen” Web applet to calculate the frequencies for the symmetric 
and asymmetric stretches for nitrous oxide. Your calculation will be very similar to the CO2 
example in Sec. 8.10. Restrict the motions to just the x-axis (e.g. neglect the bending vibrations) 
and estimate the force constants in a similar way. You should end up, again, with a 3x3 mass 
weighted force constant matrix. [Hint: k

22
xx won’t be equal to 2 k

11
xx in this case because there is a 

nitrogen on one side and an oxygen on the other side of the central atom, atom 2] (b). Which of 
the three resonance structures is most representative of the true bonding in N2O, based on the NN 
and NO force constants? 
 

Answer:  (a). Assume that k
22
xx = k(NN) + k(NO), since moving the central N simultaneously 

stretches the NN bond and compresses the NO bond. The mass weighted force constant matrix 
is: 
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The output from the “eigen” applet with units conversion using Eq. 8.10.24 is: 

Eigenvector 1: E=318.506  or ν~ =2325. cm-1 (or 4.6% high) 
-0.539616 
0.804598 
-0.247865 
------------- 

Eigenvector 2: E=89.8936  or ν~ = 1235.2 cm-1 (or 3.9% low) 
-0.625007 
-0.185588 
0.758237 
------------- 

Eigenvector 3: E=0.0000830617  center of mass translation 
0.564075 
0.564074 
0.603026 



 

The agreement is amazing given the approximations. (b). The resonance structure N≡N+–O- is 
most representative of the bonding , because the NN force constant is larger than the  NO force 
constant. 
 
 
2.  Evapotranspiration is the process of conversion of liquid water into vapor by the earth’s 
surface. Evapotranspiration is the sum of evaporation and transpiration. Evaporation is the direct 
vaporization of water from water bodies, plant surfaces, and the soil. Transpiration is the 
conversion of liquid water into water vapor by movement of water within plants and the 
subsequent loss of water vapor through stomata in the leaves. Approximately 60% of the energy 
available from the solar flux in a forest is consumed by evapotranspiration. The solar flux at the 
equator at midday is about 1000 W m-2. The evaporation of water results in a large increase in 
entropy in vegetated areas. Evapotranspiration also moderates the surface temperature and 
maintains the local humidity. To provide a very rough model, consider a flat surface that is 
heated to the boiling point of water by the sun. Assume that 60% of the solar flux is available for 
the vaporization of water on this surface. Calculate the rate of the production of entropy from the 
vaporization of water per second per m2 at midday at the equator for a forest. The enthalpy of 
vaporization of water at the normal boiling point is ∆vapH = 40.7 kJ mol-1. 
 
 
Answer:  Using Eq. 10.2.19 and the normal boiling point of water, Tb = 373.15 K at 1 atm, the 
molar entropy of vaporization is: 

 ∆trSm = 
∆trH
Ttr

 = 
40.7 kJ mol-1 (1000 J/1 kJ)

373.15 K  = 108. J K-1 mol-1 

With 60% of the solar flux utilized for evapotranspiration, the energy flux is given by: 
 JET = 1000 W m-2 (1 J s-1/1 W)(0.60) = 600. J s-1 m-2 
and the evapotransipation rate in moles of water per unit area is then 

 RET = JET/∆vapH = 
600. J s-1 m-2

40.7 kJ mol-1(1000 J/1 kJ) = 0.0147 mol s-1 m-2 

and the entropy production is the product of the evapotranspiration rate and the molar entropy of 
vaporization. A common symbol for the entropy production is σ: 
 σ = RET ∆trSm = 0.0147 mol s-1 m-2(108 J K-1 mol-1) = 1.59 J K-1 s-1 m-2 
 

Much of the sun’s energy is used for entropy production by evapotranspiration over vegetated 
areas. The deforestation of rainforests has the potential to greatly alter the energy balance in 
tropical regions, which may result in higher temperatures and the loss of productivity because of 
water scarcity. The humidity above rainforests is recycled as rain. 
   We used the flat surface at 100°C because at this point, we haven’t discussed how to calculate 
entropy change for irreversible processes. Please see Chapters 11 and 13. 
 
 

3.  Given that dH = TdS + VdP, prove that: 
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Answer:  The “misplaced” variable, in the sense of Section 9.7, is that the enthalpy is held 
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. Working through the total different of H(S,P) and setting dH = 0: 
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Setting this last equation equal to zero, for constant H, and dividing by dP at constant H: 
 
 
           (2) 
 

and solving for (∂S/∂P)H: 
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This result is an example of the Euler chain relationship. Comparing Eq. 1 and dH = TdS + VdP: 
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and inverting the last partial derivative: 
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Substitution of Eqs. 4 and 5 into Eq. 3 gives the final result: 
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When does this derivative arise? This result holds for the Joule-Thompson expansion, which is a 
constant enthalpy process from high pressure P1 to low pressure P2: 
 

 ∆S = – 
⌡

⌠

P1

P2

 
V
T dP 

Assuming an ideal gas, V/T = nR/P, giving:  ∆S = – nR 
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P dP = – nR ln P2/P1 

as expected for an ideal gas, since an ideal gas doesn’t change temperature for a Joule-Thompson 
expansion. For a real gas the temperature changes during the expansion. For a real gas V/T is 
determined from the equation of state, and then integrated. 
 
 
4.  Use normal mode analysis to decide whether propane or 2-methylpropane has a higher 
absolute entropy. You can use any convenient normal mode analysis program based on 
molecular mechanics or molecular orbital theory. 
 
 
Answer:  The results of a normal mode analysis using Spartan at the am1 level is given in the 
table below. You didn’t need to get the thermodynamic analysis, but it is included for 
comparison. 
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Table: Normal Mode Analysis for Several Hydrocarbons 

Compound translation rotation vibration total literature ν~ < 500 cm-1 
methane 143.3 42.8 0.4 186.6 186.26  
acetylene 149.4 45.4 2.7 197.5 200.94  
ethylene 150.3 66.4 2.4 219.1 219.56  
ethane 151.2 68.1 10.9 230.3 229.60 204 
cyclopropane 155.4 75.8 4.8 236.0 237.55  
propane 156.0 89.0 32.8 277.7 269.91 79, 190, 414(b) 
2-methylpropane 159.4 93.5 44.4 297.3 294.64 149, 191x2, 398x2, 478 
butane 159.4 96.7 45.4 301.4 310.23 103, 196, 206, 302, 473 
cyclohexane 164.0 95.2 36.8 296.0 298.19 214x2, 331, 467x2 
benzene 163.1 86.7 19.1 268.9 269.31 371x2 

 
Notice that 2-methylpropane has six low frequency normal modes, while propane has three. The 
lower the frequency of the normal mode the bigger the contribution to the entropy and heat 
capacity. From the table above, propane has the smallest frequency normal mode. However, the 
overall result for 2-methylpropane is a larger vibrational contribution to the entropy. 
   The normal modes for propane, using MOPAC are a little different: 
 

 142.40391   187.97537   412.50857 
 

The normal modes for 2-methylpropane, using MOPAC are: 
 

 144.44885   182.36068   199.92640   395.61601   398.93565   477.33557 

 
The thermodynamic analysis is at the bottom of the output for Spartan, GAMESS, Gaussian, and 
MOPAC. The thermodynamic analysis for propane from MOPAC, with the THERMO keyword, 
at 300 K is: 
 

                   CALCULATED THERMODYNAMIC PROPERTIES 
                                          * 
   TEMP. (K)   PARTITION FUNCTION   H.O.F.    ENTHALPY   HEAT CAPACITY  ENTROPY 
                                    KCAL/MOL   CAL/MOLE    CAL/K/MOL   CAL/K/MOL 
 
    300  VIB.         4.226                  1173.47287    8.68840    6.77570 
         ROT.     .200E+05                    894.267      2.981     22.664 
         INT.     .846E+05                   2067.740     11.669     29.439 
         TRA.     .286E+27                   1490.445      4.968     37.291 
         TOT.                       -24.224  3558.1849    16.6374    66.7306 
 

The thermodynamic analysis for 2-methylpropane from MOPAC at 300 K is: 
 

      CALCULATED THERMODYNAMIC PROPERTIES 
                                          * 
   TEMP. (K)   PARTITION FUNCTION   H.O.F.    ENTHALPY   HEAT CAPACITY  ENTROPY 
                                    KCAL/MOL   CAL/MOLE    CAL/K/MOL   CAL/K/MOL 
 
    300  VIB.         9.160                  1911.82988   13.87179   10.77417 
         ROT.     .517E+05                    894.267      2.981     24.547 
         INT.     .473E+06                   2806.097     16.853     35.321 
         TRA.     .433E+27                   1490.445      4.968     38.114 
         TOT.                       -29.325  4296.5419    21.8208    73.4355 

 
The vibrational frequencies for torsional modes are very sensitive to the level of the calculation. 
You will see large differences, especially for the lowest frequency normal modes, from program 



to program. However, the number of low frequency normal modes will be reproducible. There is 
another problem with this approach. The normal mode analysis assumes that the vibrations are 
purely harmonic oscillators. We will see in the vibrational spectroscopy chapter that torsions are 
strongly anharmonic. Normal mode analysis does a poor job, quantitatively, in predicting the 
frequencies of these vibrations. For now, just counting low frequency normal modes will help 
you to visualize the vibrational contribution to the entropy. We will argue later about how to get 
good quantitative predictions. 


