Gibbs Phase Rule: \(f = c - p + 2 \)

\(f \) = Intensive Degrees of freedom = variance
Number of intensive variables that can be changed independently without disturbing the number of phases in equilibrium

\(p \) = number of phases
gas, homogeneous liquid phases, homogeneous solid phases

\(c \) = components
Minimum number of independent constituents

Case I. No chemical reactions: \(c = \) constituents
Example 1: start with methanol and water – 2 components

Case II With chemical reactions:
Example 2: start with \(\text{NaH}_2\text{PO}_4 \) in water --
\[\text{H}_2\text{PO}_4^- \xrightleftharpoons{} \text{HPO}_4^{2-} + \text{H}^+ \xrightleftharpoons{} \text{PO}_4^{3-} + \text{H}^+ \]
Constituents: \(\text{Na}^+, \text{H}^+, \text{H}_2\text{PO}_4^-, \text{HPO}_4^{2-}, \text{PO}_4^{3-}, \text{H}_2\text{O} \)
but only 2 components -- \(\text{NaH}_2\text{PO}_4 \) and \(\text{H}_2\text{O} \).

Example 3: start with \(\text{NaH}_2\text{PO}_4 \) and \(\text{Na}_2\text{HPO}_4 \) in water --
Same constituents: \(\text{Na}^+, \text{H}^+, \text{H}_2\text{PO}_4^-, \text{HPO}_4^{2-}, \text{PO}_4^{3-}, \text{H}_2\text{O} \)
but now 3 components -- \(\text{NaH}_2\text{PO}_4, \text{Na}_2\text{HPO}_4, \) and \(\text{H}_2\text{O} \).

Need to know: \(T, P, y_A, y_B, x_A, x_B \)
total intensive variables = \(c \ p + 2 \)

But \(y_A + y_B = 1 \)
\(x_A + x_B = 1 \)
Get \(p \) such equations, one for each phase:

Independent variables = \(c \ p + 2 - p \)

But, chemical potential is everywhere equal:
\(\mu_A(x_A) = \mu_A(g) \)
\(\mu_B(x_B) = \mu_B(g) \)
Get \(p - 1 \) for each component
Get \(c \ (p-1) \) such equations:

Independent variables = \(c \ p + 2 - p - c \ (p-1) \)

\(f = c - p + 2 \)

Colby College
\[f' = c - p + 1 \quad \text{cst. P} \]
\[f'' = c - p \quad \text{cst. T&P} \]

Binary solid-liquid Equilibrium

Melting Point Variation with Composition
\[c = 2 \]
\[p = 3 \]

liquid, pure solid A, pure solid B

Solid-liquid 2-phase region:
\[f' = 2 - 2 + 1 = 1 \]

Eutectic:
\[f' = 2 - 3 + 1 = 0 \]

invariant at cst P

For NaCl in water:
Eutectic -21.1 °C at 23% wt/wt giving NaCl·2H₂O

Add One Extensive Independent Variable for Each Phase:
Gibbs energy is extensive:
Degrees of freedom:
\[D = f + p \]

Binary Solid-Liquid at constant T & P:
Solid-liquid 2-phase region:
\[f'' = 2 - 2 = 0 \]
\[D'' = f'' + p = 0 + 2 = 2 \]

\[dG = \mu_A\, dn_A + \mu_B\, dn_B \]

\[dn_A \text{ and } dn_B: \text{totals for both phases} \]

since: \(\mu_A(s) = \mu_A(l) \), and \(\mu_B(s) = \mu_B(l) \) (doesn’t matter which phase)