Part 1. Answer 6 of the following 7 questions. If you answer more than 6 cross out the one you wish not to be graded, otherwise only the first 6 will be graded. 10 points each.

1. Name two types of motion that have a zero-point energy.

2. What is the name and functional form of the potential energy for the electron in a hydrogen atom?

3. What is the magnitude of the orbital angular momentum of a 3d electron? Give the numbers of angular and radial nodes for the 3d orbital.

4. Draw a scale vector diagram to represent the states: $l = 1, m_l = -1, 0, 1$.
5. The p-orbital of an atom has two lobes of opposite phase separated by a node. One common question for students in General Chemistry is: "how does the electron get from one lobe to the other?" How do you answer this question?

6. Use the kinetic energy operator to calculate the kinetic energy of a particle on a ring (2D-rigid rotor) that has the wave function $e^{-2i\phi}$.

7. Normalize the ground state wave function for the hydrogen atom: $N e^{-Zr_{a_0}}$. Just set up the problem, don't work it through to a final answer. But, do include all important information that you would need to complete the problem and do the angular integrals (i.e. over θ and ϕ).
Part 2. Answer 3 of the following 4 questions. If you answer more than 3, cross out the one you wish not to be graded, otherwise only the first 3 will be graded. 14 points each.

8. Calculate the expectation value of the linear momentum of a harmonic oscillator with wave function $N e^{-\alpha^2 x^2}$.

9. Determine the commutator of the operators $\frac{d}{dx}$ and x.
10. What is the value of \(r \) at the radial node of the 2s orbital of the hydrogen atom? (Show your work)

11. The first excited state of a particle in a 1D-box is \(\Psi = N \sin \left(\frac{2\pi x}{a} \right) \). Show that this wave function is an eigenfunction of the Hamiltonian for the particle in a box.

Extra Credit: 10 points. Finish the integral in Problem 7.