IT’S NOT ALWAYS ASTHMA: RESPIRATORY DISTRESS IN PEDIATRICS

Kate Elizabeth Powers, D.O.
Assistant Professor of Pediatrics
Alpert Medical School of Brown University
Associate Director, Cystic Fibrosis Pediatric Program
Division of Pediatric Pulmonology
Hasbro Children’s Hospital Providence, RI
CONFLICT OF INTEREST DISCLOSURE

- I have no financial relationships, commercial interests/funding or other relevant conflicts of interest to disclose pertaining to today’s presentation
OBJECTIVES

- Recognize respiratory presentations that mimic asthma
- Identify how to assess asthma medication adherence
- Describe presentation of vocal cord dysfunction in pediatrics
- Evaluate children for sleep-disordered breathing
CASE 1

- 16-year-old female with **difficult-to-control asthma**
 - Endorses doing well since her last visit 2 months ago
 - Denies any current daytime or nighttime symptoms
 - Admits to using her **controller medication only 2-3 times/week**
 - **4 ED visits and 2 hospitalizations in the last year** due to acute asthma exacerbations
 - States that she is asymptomatic between episodes

- You perform spirometry to assess her lung function and note a normal FEV1, normal FVC and **low FEV1/FVC ratio**
CASE 1: ASTHMA

- Asthma is a chronic disease
 - Characterized by hyper-responsive airways and airway inflammation
 - Presenting with coughing, wheezing and breathlessness

- Acute exacerbations of asthma occur virtually in all asthmatic children

- Severity of exacerbations is variable and based on:
 - Severity of asthma
 - Exposures to specific triggers
 - Optimization and adherence to asthma management
CASE 1: ASTHMA ACTION PLAN

- Home exacerbation management is frequently successful
 - Acute management should be part of every Asthma Action Plan
 - When symptoms do not respond to outpatient management, evaluation by a physician or other healthcare provider is essential

- Most children with asthma exacerbations can be successfully treated with increased medication without additional diagnostic studies

- Frequent need for systemic steroids (>2/year) and/or hospitalizations for acute management indicate poorly-controlled asthma
 - Need to consider stepping-up preventative therapies, identifying comorbidities worsening asthma or in this patient, consider lack of adherence
CASE 1: SPIROMETRY

<table>
<thead>
<tr>
<th>Best Data</th>
<th>Spirometry</th>
<th>Ref</th>
<th>Pre</th>
<th>% Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC</td>
<td>Liters</td>
<td>3.04</td>
<td>(2.5 - 3.6)</td>
<td>2.88</td>
</tr>
<tr>
<td>FEV1</td>
<td>Liters</td>
<td>2.57</td>
<td>(2.1 - 3.0)</td>
<td>2.35</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>%</td>
<td>85</td>
<td>(74.6 - 95.8)</td>
<td>82</td>
</tr>
<tr>
<td>FEF25-75%</td>
<td>L/sec</td>
<td>2.88</td>
<td>(1.9 - 3.8)</td>
<td>2.29</td>
</tr>
</tbody>
</table>

![Spirometry Graph](image-url)
CASE 1: SPIROMETRY IN ASTHMA

- Majority of children with asthma have normal spirometry at baseline
 - Normal spirometry has values above lower limit of normal (LLN) for all major spirometric parameters including FEV1, FVC, and FEV1/FVC ratio

- In severe or poorly-controlled asthma, the most common finding in spirometry is an obstructive ventilatory defect defined as an FEV1/FVC below LLN
 - FEV1 is sometimes low
 - Most common pattern in children with severe asthma: slightly low FEV1/FVC in absence of any other spirometric abnormalities
CASE 1: ASTHMA EXACERBATION

- Most common spirometric pattern in an acute exacerbation is an obstructive ventilatory defect with a low FEV1.

- Several abnormalities in arterial blood gases (ABG) depending on clinical picture and degree of airway obstruction:
 - Initially increased respiratory rate, consequent decreased PaCO2 and increased pH (respiratory alkalosis).
 - Respiratory muscle fatigue and air trapping develop, PaCO2 increases with normalization of PaCO2 and pH.
 - During this period, examination is essential in identifying impending respiratory failure.
 - Course progresses, abnormally high PaCO2 with a low pH (respiratory acidosis).
 - PaO2 is usually decreased throughout course of an acute asthma exacerbation until treatment is started.

- In most, there is improvement of all spirometric measures and ABG during resolution.
CASE 1: PREDICTORS OF MORTALITY IN CHILDREN WITH ASTHMA

- Prevalence and severity of childhood asthma have increased, particularly developing countries
 - Mortality from asthma has decreased over last decade
 - Rate of asthma deaths for children is approximately 0.03/1,000 individuals in the U.S.

- Risk factors associated with increased odds of fatal asthma in children include:
 - Adolescent age
 - Male
 - History of near-fatal asthma in past or poorly-controlled asthma
 - African American or Puerto Rican heritage
 - Low socioeconomic status
 - Poor perception of symptoms
 - Children with behavioral or psychological comorbidities
CASE 1: CLINICAL RESOURCES TO OPTIMIZE ADHERENCE

- **Detailed asthma education**
 - Review inhaled technique and use with aerochamber
 - Breath-activated medications are difficult for children < 6 yrs or those with developmental delays
 - Develop a clear, preferably-color Asthma Action Plan
 - Laminated treatment tools and picture checklists

- **Confirm medications** being utilized
 - Clarify medications at home with laminated medication tools
 - Contact pharmacy to confirm refills are being pick-up appropriately
 - Encourage patients/families to bring in medications
 - Count puffs in inhalers, pills in bottles
What is the most common spirometric finding in children with severe or poorly-controlled asthma? (Clue: even when FEV1 is normal.)
LOW FEV1/FVC is the hallmark of obstruction
CASE 1: QUESTION 2

- The initial arterial blood gas abnormality with an acute asthma exacerbation is ________________.
CASE 1: ANSWER 2

The initial arterial blood gas abnormality with an acute asthma exacerbation is **respiratory alkalosis**.

As time progresses, ABG abnormality is respiratory acidosis.
True or False: Mortality of childhood asthma has decreased over time.
CASE 1: ANSWER 3

True: Mortality of childhood asthma has decreased over time.

- Disproportionately affects certain racial, ethnic and sociodemographic groups of children
- Know predictors of mortality in children with asthma
CASE 1: KEY POINTS

- Low FEV1/FVC is hallmark of obstruction
 - Most common spirometric finding in severe or poorly-controlled asthma, even when FEV1 is normal

- Initial ABG abnormality with an acute asthma exacerbation is respiratory alkalosis
 - As time progresses, ABG abnormality is respiratory acidosis

- Mortality of childhood asthma has decreased over time
 - Disproportionately affects certain racial, ethnic and sociodemographic groups of children
 - Know predictors of mortality in children with asthma
CASE 2

- 11 year-old female with **cough** and **wheeze** associated with viral infections
 - Born at **28 weeks of gestation** requiring 2-month neonatal intensive care unit (NICU) course prior to discharge home on supplemental oxygen
 - Required supplemental oxygen until 6 months of life
 - Now participates in competitive lacrosse and field hockey without difficulty
 - No cough or wheeze with exposure to allergens or irritants

- Chest radiograph is normal

- Spirometry follows
CASE 2: SPIROMETRY

<table>
<thead>
<tr>
<th>Best Data</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirometry</td>
<td>Ref</td>
<td>Pre</td>
<td>% Ref</td>
<td>Post</td>
<td>% Ref</td>
<td>%Chg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC Liters</td>
<td>2.60</td>
<td>(2.1 - 3.1)</td>
<td>2.22</td>
<td>85</td>
<td>2.51</td>
<td>96</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1 Liters</td>
<td>2.22</td>
<td>(1.8 - 2.6)</td>
<td>1.60</td>
<td>72</td>
<td>1.99</td>
<td>90</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1/FVC %</td>
<td>86</td>
<td>(75.0 - 96.6)</td>
<td>72</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75% L/sec</td>
<td>2.51</td>
<td>(1.7 - 3.4)</td>
<td>1.04</td>
<td>41</td>
<td>1.91</td>
<td>76</td>
<td>84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>All Trials</th>
<th>Pre</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
<th>Trial 5</th>
<th>Trial 6</th>
<th>Trial 7</th>
<th>Trial 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirometry</td>
<td>FVC Liters</td>
<td>1.70</td>
<td>1.70</td>
<td>1.92</td>
<td>2.22</td>
<td>1.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1 Liters</td>
<td>1.55</td>
<td>1.60</td>
<td>1.55</td>
<td>1.50</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1/FVC %</td>
<td>91</td>
<td>95</td>
<td>81</td>
<td>68</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75% L/sec</td>
<td>1.70</td>
<td>1.74</td>
<td>1.46</td>
<td>1.04</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spirometry</th>
<th>Post</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
<th>Trial 5</th>
<th>Trial 6</th>
<th>Trial 7</th>
<th>Trial 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC Liters</td>
<td>2.43</td>
<td>2.51</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1 Liters</td>
<td>1.99</td>
<td>1.98</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1/FVC %</td>
<td>82</td>
<td>79</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75% L/sec</td>
<td>1.97</td>
<td>1.91</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing flow-volume curve](image)
CASE 2: SPIROMETRY

Best Data

<table>
<thead>
<tr>
<th>Spirometry</th>
<th>Ref</th>
<th>Pre</th>
<th>% Ref</th>
<th>Post</th>
<th>% Ref</th>
<th>% Chg</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC Liters</td>
<td>2.60</td>
<td>2.22</td>
<td>85</td>
<td>2.51</td>
<td>96</td>
<td>13</td>
</tr>
<tr>
<td>FEV1 Liters</td>
<td>2.22</td>
<td>1.60</td>
<td>72</td>
<td>1.99</td>
<td>90</td>
<td>24</td>
</tr>
<tr>
<td>FEV1/FVC %</td>
<td>86</td>
<td>(75.0 - 96.6)</td>
<td>72</td>
<td>79</td>
<td>76</td>
<td>84</td>
</tr>
<tr>
<td>FEF25-75% L/sec</td>
<td>2.51</td>
<td>1.04</td>
<td>41</td>
<td>1.91</td>
<td>76</td>
<td>84</td>
</tr>
</tbody>
</table>

All Trials

<table>
<thead>
<tr>
<th>Spirometry</th>
<th>Pre</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
<th>Trial 5</th>
<th>Trial 6</th>
<th>Trial 7</th>
<th>Trial 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC Liters</td>
<td>1.70</td>
<td>1.70</td>
<td>1.92</td>
<td>2.22</td>
<td>1.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1 Liters</td>
<td>1.55</td>
<td>1.60</td>
<td>1.55</td>
<td>1.50</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1/FVC %</td>
<td>91</td>
<td>95</td>
<td>81</td>
<td>68</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75% L/sec</td>
<td>1.70</td>
<td>1.74</td>
<td>1.46</td>
<td>1.04</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spirometry

<table>
<thead>
<tr>
<th>Spirometry</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
<th>Trial 4</th>
<th>Trial 5</th>
<th>Trial 6</th>
<th>Trial 7</th>
<th>Trial 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC Liters</td>
<td>2.43</td>
<td>2.51</td>
<td>2.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1 Liters</td>
<td>1.99</td>
<td>1.98</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEV1/FVC %</td>
<td>82</td>
<td>79</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75% L/sec</td>
<td>1.97</td>
<td>1.91</td>
<td>1.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CASE 2: BRONCHOPULMONARY DYSPLASIA

- The patient has a history of bronchopulmonary dysplasia (BPD)

- Defined by some as need for supplemental oxygen support for >28 days in children born < 32 weeks gestation (definition is debated)

- Symptoms:
 - Tachypnea at rest or with exertion: feeding, crying
 - Coughing
 - Wheezing
 - Labored breathing with retractions and nasal flaring
CASE 2: EXERCISE INTOLERANCE

- Many children who survive BPD have complaints of exercise intolerance.
- Cardiopulmonary exercise testing (CPET) is usually normal or near-normal maximum oxygen consumption.
- Long-term follow-up studies have shown normal or slightly reduced diffusing capacity and either a normal or elevated RV/TLC ratio.
- Airway resistance is normal or elevated in few long-term follow-up studies that report these resistance measurements.
CASE 2: BPD AND EARLY LUNG INJURY

- Serious lung injury in early infancy can lead to chronic lung disease (CLD) or BPD
 - Most common etiology is premature birth with respiratory distress syndrome (RDS)

- Despite management advances of prematurity, BPD incidence has not decreased
 - Probably due to increased survival of smallest premature infants
 - About 12% of births in the U.S. are preterm with a 90% survival rate
 - **BPD occurs in 10-40%** of these survivors depending on gestational age
CASE 2: BPD PRESCHOOL

- As children with BPD have been followed through childhood to early adulthood, many have **persisting physiologic abnormalities** associated with respiratory symptoms due to early lung injury.

- In **preschool children** using infant pulmonary function techniques, only about 1/3rd have a positive response to bronchodilator.
 - Can be associated with continued bronchodilator use, persistent wheezing and asthma diagnosis.

- BPD is an independent risk factor for having asthma in later childhood compared to children born at term.
CASE 2: BPD INTO ADULTHOOD

- **School-aged children with** BPD often have reduced FEV1, FEF25-75%, and elevated RV/TLC ratio
 - Few reports of diffusing capacity, reduced and normal diffusing capacity reported
 - Chest CT show abnormal peripheral airways that increase risk for chronic obstructive pulmonary disease (COPD)
 - Likely to have more respiratory symptoms than term children and greater risk for asthma

- **Physiologic abnormalities associated with** BPD may persist into adulthood
 - Young adults experience increased frequency of respiratory symptoms, suggesting that, despite ongoing lung growth, many continue to have lingering effects of early-in-life lung injury
CASE 2: QUESTION

BPD develops in ___% of very-low and extremely-low birth weight infants:

A. <10%
B. 10-20%
C. 10-40%
D. >40%
CASE 2: ANSWER

BPD develops in **10-40%** of very-low and extremely-low birth weight infants:

A. <10%

B. 10-20%

C. **10-40%**

D. >40%
CASE 2: KEY POINTS

- **Prematurity** and **BPD** are risk factors for subsequent pulmonary function abnormalities and **asthma**
- Some infants with **neonatal lung injury** (RDS, meconium aspiration, extremely low birth weight, etc.) develop BPD
- Despite advances in neonatal care, **BPD develops in 10-40% of very-low and extremely-low birth weight infants**
- BPD remains the most common complication of extreme prematurity
- **Long-term sequelae** of neonatal lung injury include airway obstruction, hyperinflation, and airway hyperreactivity
7-year-old female with **wheezing 1-2 days/week** and nighttime cough during all seasons

- Wheezing improves with albuterol and systemic steroid administration
- Additional symptoms: **chronic sniffing, itchy nose, mouth breathing, loud snoring**
- Denies purulent nasal discharge, headache or facial pain
- Daytime symptoms improved on a low-dose inhaled corticosteroid, but continues to have frequent nighttime cough

Family has a cat, but no smokers in the home
CASE 3: PHYSICAL EXAMINATION

- **Pertinent vital signs**: Weight and height at the 25th percentile
- **HEENT**: Infra-orbital edema, crease across his nasal bridge, nasal mucosal edema, clear nasal discharge
- **Respiratory**: Normal anterior-posterior diameter, no retractions or labored breathing, end-expiratory wheezes with a normal expiratory phase
- **Skin**: mild eczema in antecubital fossae bilaterally
CASE 3: ALLERGIC RHINITIS (AR)

- This child demonstrates atopy, has allergic rhinitis (AR) in addition to asthma.
- AR occurs in over 10% of children and is more common in children with asthma.
- Children with AR are 3 times more likely to develop asthma than are those without.
CASE 3: CHARACTERISTICS OF AR

- "Allergic shiners:” infraorbital crescents of edema and venous congestion
- **Dennie-Morgan lines:** creases below the lower eyelids indicative of allergic conjunctivitis
- Line across nasal bridge occurs with “**allergic salute**” from chronic upward wiping of the nose
- **Mouth breathing** may be due to chronic nasal obstruction by mucosal edema
- “**Cobblestoning**” of posterior pharynx caused by **lymphoid hyperplasia** is another common finding in allergic rhinitis
- **Nighttime cough** can result from post-nasal drainage caused by allergens such as dust mites, molds, pet dander or cockroaches
CASE 3: ENVIRONMENTAL ALLERGY TESTING

- **Skin or bloodwork testing to aeroallergens** is indicated in those with poorly-controlled AR and asthma.

- Therapy for AR can be initiated without additional diagnostic testing.

- Identifying specific allergens by performing immediate hypersensitivity testing (skin prick tests) or specific serum immunoglobulin E immunoassays can aid in avoiding potential triggers.

- **Environmental control measures** include removing allergen source and any potential reservoirs:
 - Success of allergen avoidance in reducing symptoms depends on specific allergens involved and aggressiveness of efforts to remove or avoid allergens.
 - Cat dander is difficult to remove from the home even after the cat has been relocated because the dander persists in carpet, upholstered furniture, and on clothing.
CASE 3: PATIENT UPDATE

- Environmental allergy testing results:
 - Very low/low level (0-1/1): Molds (4 types)
 - Moderate level (2): Dust mites, cockroach
 - High level (3): Dog/cat dander, grasses (5 types)
 - Very high level (4-6): Mouse/mouse epithelia, Trees (birch, beech, oak)
 - IgE was markedly elevated (3460.5 IU/mL)

- Patient is started on montelukast, anti-histamine and nasal corticosteroids in addition to already prescribed low-dose inhaled corticosteroid

- Follow-up appointment reveals marked improvement with chronic sniffling, itchy nose, and mouth breathing; but **loud snoring was unchanged**
CASE 3: WHAT TO DO WITH SNORING?

- Persistent, loud snoring in children **always warrants further evaluation**
 - Referral for diagnostic sleep study, sleep physician, pediatric pulmonologist and/or pediatric ENT

- The nose has the greatest resistance in the upper airway, but during sleep the pharynx has the greatest increase in airway resistance
 - This increased resistance is due to decreased pharyngeal size from decreased neuromuscular tone

- Normal children **snore infrequently**

- Reasons to consider further evaluation for **sleep-disordered breathing** other than snoring:
 - Daytime sleepiness or issues with attention/concentration
 - Restless sleep despite good sleep hygiene
 - Choking/gasping arousals
 - Observed sleep apnea during sleep
CASE 3: SLEEP-DISORDERED BREATHING

Sleep-disordered breathing (SDB) in children is associated with varied factors:
• Craniofacial anatomy including midface hypoplasia
• Adenotonsillar hypertrophy
• Obesity
• Upper airway inflammatory processes
• Environmental exposures
• Asthma
 • Prematurity
 • Genetic variation

Each of these factors contributes to SDB because of:
• Anatomy of upper airway
• Intrinsic compliance of upper airway
• Neuromuscular control
CASE 3: QUESTION

Children who **snore** warrant further evaluation with:

A. Diagnostic sleep study
B. Sleep physician or pediatric pulmonologist consultation
C. Pediatric ENT consultation
D. Any or all of the above
CASE 3: ANSWER

Children who *snore* warrant further evaluation with:

A. Diagnostic sleep study
B. Sleep physician or pediatric pulmonologist consultation
C. Pediatric ENT consultation
D. Any or all of the above
CASE 3: KEY POINTS

- Know the history and physical findings that suggests that allergy is contributing to asthma
- Children with allergic rhinitis are 3 times more likely to develop asthma than are those without
- Environmental allergy testing is indicated for children with asthma and atopic features
- Normal children snore infrequently and warrant further evaluation with a diagnostic sleep study, sleep physician, pediatric pulmonologist and/or pediatric ENT consultation
CASE 4

- 15-year-old male with **exercise intolerance** over the past 2 years as he has been more active in track
 - Initially runs without difficulty
 - Develops shortness of breath and chest tightness, worse in cold weather
 - During episodes, he has frequent cough, feeling of suffocation, stridor and a hoarse voice

- Normal vital signs, height 60th percentile; weight 55th percentile

- Normal cardiac and pulmonary examination except for **mild pectus excavatum**

- Normal spirometry with FVC 103% predicted, FEV1 100% predicted, normal FEV1/FVC ratio
CASE 4: EXERCISE-INDUCED DYSPNEA

- This patient has normal spirometry and lung exam except pectus excavatum
 - Symptoms consistent with **vocal cord dysfunction** (frequent cough, feeling of suffocation, stridor and a hoarse voice)

- Vocal cord dysfunction (VCD) or inspiratory laryngeal obstruction (ILO) is often confused with asthma
 - Symptoms and triggers can be similar
 - Some individuals have both VCD and asthma

- **Cardiopulmonary exercise testing** would be an appropriate next step in evaluation of his exercise-induced dyspnea as well as concerns for vocal cord dysfunction
 - Exercise testing protocols vary and can be used to evaluate exercise-induced bronchospasm or cardiac and pulmonary limitation
CASE 4: PECTUS EXCAVATUM

- **Pectus excavatum**: congenital chest wall deformity characterized by concave depression of the sternum
 - Pectus excavatum contributing to current symptoms can be difficult to determine, but is rare
 - Clinical significance of mild-to-moderate pectus excavatum abnormalities is controversial

- **Restrictive ventilatory defect** has been seen associated with pectus excavatum
 - Restriction appears to improve initially following surgical repair, then re-develops, suspected to be related to chest wall growth restriction
 - Some surgeons suggest delaying surgery until post-pubertal growth to minimize this growth restriction
 - Often performed for aesthetic reasons rather than treatment of cardiopulmonary compromise

- Most common complaints associated with pectus excavatum: exercise intolerance and shortness of breath, which improve following surgical repair of the chest wall deformity

- Degree of restriction on spirometry does not correlate with severity of symptoms
CASE 4: VOCAL CORD DYSFUNCTION

- Common signs/symptoms:
 - Shortness of breath or difficulty getting air into the lungs
 - Throat or chest tightness
 - Frequent cough or throat clearing
 - Feeling of choking or suffocation
 - Noisy breathing: stridor, gasping, raspy sounds or wheezing
 - Hoarse voice

- VCD comes on suddenly, varies in severity and does not occur during sleep
- No hypoxemia
- Frequently misdiagnosed as anxiety or panic attacks
CASE 4: ELUCIDATING VCD

- **Triggers:** gastroesophageal reflux (GER), post-nasal drip, upper respiratory infections, exercise, strong odors/fumes, tobacco smoke, strong emotions and stress

- **Diagnosis:**
 - Suspected if symptoms are **not alleviated by bronchodilators**
 - **Flattened inspiratory loop** with pulmonary function testing or witnessed inspiratory stridor with CPET testing
 - Laryngoscope to evaluate for other etiologies of vocal cord damage: nerves, growths or other upper airway abnormalities

- **Management:**
 - Medicines are not indicated to control/prevent VCD
 - **Breathing techniques** that help control your vocal cords are the mainstay and are usually taught by a speech therapist or psychologist who is trained and experienced in VCD
 - **Treat the triggers:** sinus symptoms, GER, stress
 - Learn to **manage stress and strong emotions** if those are identified triggers with relaxation techniques, biofeedback and psychotherapy
CASE 4: QUESTION

Which of the following statements is most accurate.

A. Vocal cord dysfunction and asthma symptoms/triggers are not similar.
B. Vocal cord dysfunction is not associated with hypoxemia.
C. Vocal cord dysfunction occurs during sleep.
D. Vocal cord dysfunction is relieved with bronchodilator use.
CASE 4: ANSWER

Which of the following statements is most accurate.

A. Vocal cord dysfunction and asthma symptoms/triggers are not similar.

B. Vocal cord dysfunction is not associated with hypoxemia.

C. Vocal cord dysfunction occurs during sleep.

D. Vocal cord dysfunction is relieved with bronchodilator use.
CASE 4: KEY POINTS

- Cardiopulmonary limitation due to pectus excavatum is rare
- Dyspnea with exertion warrants further assessment with exercise testing, especially if bronchodilators are not alleviating symptoms
- Vocal cord dysfunction is often confused with asthma or misdiagnosed as anxiety or panic attacks
- Unlike asthma, **VCD is not associated with hypoxemia and does not occur during sleep**
CASE 5

- 3 year-old male with a persistent cough that began in early fall
 - Coughs day and night, though cough is possibly worse at night
 - Cough increases with exercise and with upper respiratory tract viral infections
 - Diagnosed with pneumonia and treated with antibiotics 2-3 times in the past 4 months due to abnormal chest radiographs
 - No fever or chest pain, and does not produce sputum
 - No other history of recurrent infections

- Chest radiograph as follows:
CASE 5: CHEST RADIOGRAPH
CASE 5: CHEST RADIOGRAPH

Mild hyperinflation

Peri-bronchial cuffing/thickening

RML streaky and patchy sub-segmental opacities most consistent with atelectasis from mucus-plugging
CASE 5: ATELECTASIS

- These chest radiograph findings are common in asthma; **this child has asthma**
- Numerous conditions are associated with atelectasis in children, asthma is the most common
- **Atelectasis** is a reversible radiologically apparent loss of lung volume seen in a segment of lung, a lobe of lung, or occasionally in complete lung
 - Caused by increased accumulation of alveolar fluid
 - Usually secondary phenomenon
 - Occurs in young children frequently due to high compliance of their rib cage and small airways, which are more easily blocked with mucus and fluid
CASE 5: LOBAR ATELECTASIS

- Lobar atelectasis can occur in any lung area in children, **RML is most often affected in asthma**
 - RML bronchus has an acute angle take-off from bronchus intermedius and a narrow diameter, creating poor conditions for drainage
 - RML also has poor collateral ventilation which hinders re-inflation once atelectasis occurs
CASE 5: LOBAR ATELECTASIS

- Atelectasis is seen in frontal projection, but is frequently more distinctly seen on lateral projection on chest radiographs, as demonstrated in these radiographs.
CASE 5: CHEST RADIOGRAPH

- Mild hyperinflation
- Peri-bronchial cuffing/thickening
- RML streaky and patchy sub-segmental opacities most consistent with atelectasis from mucus-plugging
CASE 5: CHEST RADIOGRAPHY

- Chest radiograph is **not typically indicated in an uncomplicated asthma exacerbation** in a previously diagnosed patient.

- All children with suspected asthma should have a **chest radiograph at some point** in diagnostic process to exclude:
 - Parenchymal lung disease
 - Suggestion of foreign body in the airway
 - Congenital pulmonary abnormality

- Chest radiographs frequently obtained in asthma exacerbations:
 - Usually do not change diagnosis or management
 - Not always indicated
 - Findings are variable and not correlated with severity of acute exacerbation
CASE 5: LOCALIZED FINDINGS

- Chest radiograph can be helpful if asthma diagnosis is unclear or other diagnoses need to be considered:
 - Pneumonia
 - Foreign body aspiration
 - Pneumomediastinum
 - Pneumothorax

- If localized findings on chest examination, especially if there is no clinical improvement with acute asthma therapy, radiograph should be considered.
CASE 5: OTHER RADIOLOGIC FINDINGS

- **Pneumothorax (PTX)** is an uncommon complication of asthma in children
 - More often seen in the mechanically ventilated child
 - Can be life-threatening
 - Should be considered in a child with asthma and asymmetric breath sounds, chest or shoulder pain, or severe degree of tachypnea or hypoxemia
 - Chest radiograph is the initial diagnostic study to identify a PTX

- **Secondary pneumomediastinum** occurs due to excess pressure in alveolus leading to alveolar rupture and free air in mediastinum, can occur in asthma
 - Uncommon in children
 - Suspected if subcutaneous emphysema or crepitus is observed
True or False: Atelectasis is common with asthma exacerbations in young children and is most often seen in the right middle lobe.
True: Atelectasis is common with asthma exacerbations in young children and is most often seen in the right middle lobe.
CASE 5: KEY POINTS

- Chest radiographs are not usually indicated in acute exacerbations of asthma.
- Recognize indications for chest radiograph in a patient with acute asthma.
- In asthma exacerbations, chest radiograph is often normal, common findings:
 - Hyperinflated lung fields
 - Atelectasis from mucus plugging of the airways
 - Peri-bronchial thickening/cuffing
- Atelectasis is common with asthma exacerbations in young children.
- Atelectasis is most often seen in RML.
- Pneumothorax is rare in non-mechanically ventilated asthmatic.

Breathe easy!
You can't control EVERYthing!

theAwkwardYeti.com
ADDITIONAL RESOURCES

- American Thoracic Society, Patient Information Series (www.thoracic.org)
- American Academy of Allergy, Asthma and Immunology (www.aaaai.org)
- State Department of Health has locally accepted version of Asthma Action Plan
- Your friendly local pediatric pulmonologists
THANK YOU FOR YOUR TIME AND ATTENTION. QUESTIONS?

A complete list of references can be supplied upon request.

Please email me at kate.powers@lifespan.org