Practice Exam 3

Question 1

a) Circle the product that results when phenylmagnesium bromide reacts with water.

b) The compound eugenol, a major constituent in oil of clove, is pictured below. On the picture, circle the most acidic hydrogen atom.

c) Circle the major product that results when trans-2-butene is treated with acidic water.

d) Circle the product that results when cyclohexene reacts with hydrogen gas and palladium metal.
Question 2. Identify the missing reagents and/or major product(s) of the following reactions. In the small box, identify the reaction type (S_N2, S_N1, E2 or E1). Be sure to pay close attention to stereochemistry where appropriate.

a)
\[
\begin{align*}
\text{Br} \quad \xrightarrow{\text{AgNO}_3, \text{CH}_3\text{OH}} & \quad \text{OCH}_3 \\
\text{product:} & \\
\text{reaction type:} & \text{S_N1} \\
\text{(E1 - minor)}
\end{align*}
\]

b)
\[
\begin{align*}
\text{Cl} \quad \xrightarrow{\text{KO}_2\text{Bu}, \text{iBuOH}} & \quad \text{H}_3\text{C} = \text{CH}_3 \\
\text{reaction type:} & \text{E2}
\end{align*}
\]

c)
\[
\begin{align*}
\text{OH} \quad \xrightarrow{\text{H}_2\text{SO}_4} & \quad \text{CH}_3 \\
\text{reaction type:} & \text{E1}
\end{align*}
\]
Question 3. (12 points) Consider a reaction with the following energy diagram.

![Energy Diagram](image)

a) Is the reaction endergonic or exergonic?

endergonic

b) If we assume that the reaction reaches equilibrium, what species (A, B, or C) will be in the highest concentration at the end of the reaction?

A

c) What species will be in the lowest concentration?

B

d) How might we design this reaction to convert A completely into C?

If C is removed while it is formed, all of A will be converted to C
Question 4. Starting from 1-methylcyclopentene, provide the missing reagents (in the boxes) for each of the following reactions. *Multiple steps may be needed.*

a)

1. BH$_3$
2. H$_2$O$_2$, NaOH

b)

H$_2$O$^+$

c)

D$_2$, Pd/C

d)

1. HBr
2. Mg, ether
3. D$_2$O
Question 5. a) In the box below, identify the product formed when deuterium-labeled 1-hexene is treated with dilute bromine in ethanol. *Make sure to consider stereochemistry.*

\[
\text{Br}_2, \text{EtOH} \quad \rightarrow \quad \text{Product}
\]

b) Provide a complete mechanism showing how your product in part (a) is formed. *Don’t skip any steps.* Make sure to clearly explain both the regiochemistry of your product (how & why each functional group becomes attached to a particular carbon atom in your product) and the stereochemistry of your product.

\[
\begin{align*}
&\text{Secondary carbon on the bromonium ion has larger } \delta^+ \text{ than the primary carbon} \\
&S_N2 \text{ ring opening of the bromonium ion proceeds with inversion of stereochemistry}
\end{align*}
\]
Question 6. Propose reagents that will accomplish the following transformation, and provide a complete mechanism. Even if you get stuck, proceed as far as you can for partial credit. It helps to analyze the problem both forwards and backwards.

\[
\begin{align*}
\text{HO} & \quad \text{CH}_3 \\
\text{HO} & \quad \text{CH}_3 \\
\text{HO} & \quad \text{CH}_3 \\
\end{align*}
\]
Extra credit. Provide a complete mechanism for the following reaction.