Problem Set #5
CH241-2001F

[1] Examine each of the following compounds and,
(a) predict the number of signals in its proton NMR spectrum
(b) rank the signals according to chemical shift (1 being the most upfield)
(c) provide a ratio of the integrals where appropriate, and
(d) indicate the splitting pattern of every signal

[2] Explain how you would distinguish between the two compounds in each of the following pairs by 1H NMR spectroscopy.

(a) CH$_3$CO$_2$CH$_2$CH$_3$ and CH$_3$CH$_2$CO$_2$CH$_3$

(b) and

(c) and

(d) and

[3] Give structures for:

(a) A compound of the formula C$_3$H$_3$Cl$_3$ that shows only one signal in its 1H and 13C NMR.
(b) A compound of the formula C$_6$H$_{12}$ that has only one signal in its 1H NMR but two signals in its 13C NMR.
(c) A compound of the formula C$_3$H$_8$O that gives the following spectral data: 1H NMR (CDCl$_3$) δ 0.9 (t, J = 7 Hz, 3H), 3.4 (s, 3H), 3.8 (q, J = 7Hz, 2H); 13C NMR (CDCl$_3$) δ 14.4, 53.6, 65.2.
A molecule of the formula $C_5H_{10}O$ gives the 1H and ^{13}C NMR spectrum shown below. What is the structure of this molecule?