[1] Explain the following observations.

(a) Compound A gives an epoxide upon treatment with a base but B does not.

(b) To prepare bromomethane from dimethylether, one needs to use HBr instead of NaBr.

(c) Optically active (R)-2-iodopentane racemizes when stirred in a solution of sodium iodide in acetone.

(d) The S_N1 reaction of C is faster than that of D.

(e) The E2 reaction of E is slower than that of F.

(f) The following compound is notoriously resistant toward S_N2, S_N1, E_1, and E_2 reactions.
An inquisitive orgomaniac, Reggie O’Kemist, decided to study the ring opening reaction of 2,2-dimethyloxirane with some fancy labeling experiments. He was amused when he found out that the position of the 18O label in the product diol depended on whether the reaction was done in acid or base. His reaction conditions are given below. Rationalize the results. (The oxygen in bold is 18O.)

![Ring opening reaction](image)

Predict which reaction in each pair given below is faster. For the faster reaction, write the product(s) and identify the mechanism involved.

(a) IBr \(\xrightarrow{\text{NaBr}}\) DMSO
(b) CH$_3$I Br \(\xrightarrow{\text{(CH$_3$)$_3$N}}}\) acetone
(c) CH$_3$OCH$_3$CH$_3$I \(\xrightarrow{\text{NaI}}\) acetone
(d) (CH$_3$)$_3$CCH$_2$CH$_2$CH$_2$Br \(\xrightarrow{\text{(CH$_3$)$_3$N}}\) THF

Propose reasonable mechanisms for the following reactions.

(a) Br$_2$HCH$_2$HCH$_2$Br \(\xrightarrow{\text{KOH/H$_2$O}}\) COC
(b) H$_2$C=C=CH$_2$ \(\xrightarrow{\text{HI}}\) I$_2$
(c) Br$_2$HCH$_2$HCH$_2$H \(\xrightarrow{\text{EtONa}}\) EtOH \(\xrightarrow{\text{EtOH}}\) H$_3$C=HCH$_3$