Functions with Dense Graphs

Eli Dupree and Ben Mathes

March 1, 2012

Most of us love an extreme example. In their recent “bouquet of discontinuous functions” [1], Drago, Lamberti, and Tony omit our favorite flower: a function with a dense graph. A natural occurrence appears when we encounter additive homomorphisms of the real numbers. A typical exercise asks us to prove that such a homomorphism f satisfies $f(s) = rs$, for some real number r and all rational numbers s ([6] p. 51). It is fun to point out to students that for continuous f, the equation is good for all real numbers s, but there exist discontinuous examples, and they are so wild that their graphs are dense in the plane ([3], [5] p. 200)!

Recall that a subset D of \mathbb{R} (or \mathbb{Q}) is dense when every infinite interval intersects D. A function $f : \mathbb{R} \to \mathbb{R}$ has a dense graph when every infinite rectangle intersects the graph of f, or equivalently, when, for every infinite interval I, the image $f(I)$ is dense. This note describes new elementary examples of such functions. Start with an enumeration \{r_1, r_2, r_3, \ldots\} of the positive rational numbers \mathbb{Q}^+, then define the function $f : \mathbb{Q}^+ \to \mathbb{Q}^+$ that maps the rational m/n (written in reduced form) to r_m. We prove that f has a graph dense in the first quadrant. We encourage the reader to play with various specific examples of such f, for example when the enumeration is the classic one

$$\left\{ \frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{2}{2}, \frac{3}{1}, \ldots \right\},$$

or one of the interesting enumerations in [2]. We found a completely elementary proof (though quite intricate) that the graph of f is dense in the special case of the classic enumeration. For the general proof presented below, we rely on the prime number theorem, a calculus problem, and a short lemma.

For each $x \in \mathbb{Q}^+$, let $\pi(x)$ denote the number of primes p less than or equal to x. The prime number theorem gives a handle on the rate of growth of π. A proof can be found in [4].
Prime number theorem The function $\pi(x)$ behaves asymptotically like $x / \ln x$, i.e.

$$\lim_{x \to \infty} \frac{\pi(x)}{x / \ln x} = 1$$

A good calculus problem Assume that $a < b$. We have

$$\lim_{x \to \infty} \left[\frac{bx}{\ln(bx)} - \frac{ax}{\ln(ax)} \right] = \infty.$$

A comparison with $x / \ln x$ does the trick:

$$\frac{bx}{\ln(bx)} - \frac{ax}{\ln(ax)} = \frac{b}{\ln b + 1} - \frac{a}{\ln a + 1} \to b - a.$$

A short lemma Assume $a, b \in \mathbb{Q}^+$ with $a < b$. There exists $N \in \mathbb{N}$ such that, for all $m > N$, there exists p_m relatively prime to m with $p_m \in (am, bm)$.

Choose N_1 so that $aN_1 > 1$, then find $q \geq 1$ so that $(aN_1)^q > N_1$. The calculus problem and the prime number theorem let us find $N \geq N_1$ with

$$q < \pi(bm) - \pi(am)$$

for all $m \geq N$. If $m > N$, then $a^q m^{q-1} > a^q N_1^{q-1} > 1$, so $(am)^q > m$. Our choice of N ensures that the interval (am, bm) contains at least q primes $(p_i)_{i=1}^q$, and the inequality

$$m < (am)^q \leq \prod_{i=1}^q p_i$$

shows that there exists $p_m \in \{p_1, \ldots, p_q\}$ such that p_m does not divide m.

Proof of density Assume $\sigma : \mathbb{N} \to \mathbb{Q}^+$ is an enumeration of the positive rational numbers, and define $f : \mathbb{Q}^+ \to \mathbb{Q}^+$, for reduced $m/n \in \mathbb{Q}^+$, by

$$f\left(\frac{m}{n}\right) = \sigma_m.$$

To show the graph of f dense in the first quadrant, let an interval (c, d) in \mathbb{Q}^+ be given. We need to show that $f(c, d)$ is a dense subset of \mathbb{Q}^+. Let a and b be the reciprocals of d and c (respectively), choose N as in the short lemma, and note that $f(c, d)$ contains the dense set

$$\{ \sigma_m : m > N \},$$

a consequence of

$$c = \frac{1}{b} < \frac{m}{p_m} < \frac{1}{a} = d$$

(for all $m > N$). Thus $f(c, d)$ is itself dense in \mathbb{Q}^+.

2
References

