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1. INTRODUCTION

The goal of this thesis is to give an expository report on elliptic curves over finite fields.
An elliptic curve is defined as a smooth curve of genus 1 having a known point, denoted
O. It can also be defined as a smooth curve given by a Weierstrass equation.

We begin by giving an overview of the necessary background in algebraic geometry to
understand the definition of an elliptic curve such as varieties, Weierstrass equations, and
genus in Sections 2.1 and 2.2. We then explore the general theory of elliptic curves over
arbitrary fields, such as the group structure in Section 3.1, isogenies in Section 3.2, and the
endomorphism ring in Section 3.3. In Section 4, we study elliptic curves over finite fields.
We focus on the number of Fg-rational solutions, Tate modules, supersingular curves,
and applications to elliptic curves over Q. In particular, we approach the topic largely
through the use of the Frobenius endomorphism. While Sections 2 and 3 are written so
that the material is applicable to arbitrary fields, much of the presented information was
chosen because of its utility to the theory of elliptic curves over finite fields.

The primary reference for Section 2 is Chapters I, II, and III of [5]. Chapter III of [5]
is also the main reference for Sections 3.1 and 3.2. The primary reference for Sections
3.3, 4.2, and 4.3 is Chapters 12 and 13 of [2]. Chapter V of [5] is the main reference
for Section 4.4. Lastly, the references used for Section 4.5 are Chapter VII of [5] and
Chapter 16 of [3].



2. GENERAL THEORY OF ELLIPTIC CURVES

We will first state the definition of an elliptic curve. Although we have not yet defined
some of the terms, this will allow the reader to make note of the important terms as they
appear.

Definition 2.0.1. An elliptic curve (E, Q) is a smooth curve E of genus 1 having a known
point O.

The aim for Section 2.1 is to establish what a curve is. The genus of a curve will be
thoroughly explained in Section 2.3.

2.1. Projective Varieties. We will start by introducing projective space. This will serve
as the foundation for elliptic curves and the majority of the objects in this thesis.

Unless otherwise specified, K will denote a perfect field, which means that every finite
extension of K is separable. Examples of perfect fields include fields of characteristic
zero, algebraically closed fields, and finite fields.

Definition 2.1.1. The projective n-space P™ over a field K, is the set of equivalence classes
of (n+1)-tuples (xg, z1, . .., z,), where each entry xy, . .., z, is an element of the algebraic
closure K of K, under the following equivalence relation ~:

(Toy -y xn) ~ (Yo, -+ s Yn) if there exists A € K such that
;= Ay; forallie {0,...,n}.

The equivalence class of a tuple (zg,...,z,) is denoted [z, ..., x,].

Note that P" is dependent on the field K. If there is any ambiguity about the field we
may write P"(K). Also note that the elements (equivalences classes) of projective space
over K have entries in K. We write P"(K) if we want to specify only the K-rational

points in P", i.e., the set of equivalences classes where each tuple has entries in K.

Ezxample 2.1.2. We can think of P" as describing the set of all lines in (n + 1)-space
passing through the origin. The elements of the real projective line P*(R), thought of as
lines, can then be determined by their slope, which is a unique real number for all lines
except for the vertical line [0, 1] € P!(R) having corresponding “slope” oo.

FIGURE 1. The real projective line P'(R).
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From this, we see that the real projective line is homeomorphic to the circle St and
to RU { oo}, where [1,y] € PY(R) corresponds to y € RU {oo} and [0,1] € P(R)
corresponds to co € RU{ oo }.

In order to define varieties, we must consider homogenous polynomials in K[Xo, ..., X,
For ease of notation, we will write K[X] to mean K[Xy,...,X,]. By a (degree-d) ho-

mogenous polynomial, for d € Z-y, we mean a polynomial f € [X] with the property
that for each A € K,

fAXg, .. AX,) = M (X, ..., X))

Definition 2.1.3. A projective variety V is a set of the form

for some homogenous polynomials fi, ..., f,, € K[X] satisfying the property that I(V) =
(fo,- - fm) C K[X] is a prime ideal.

In this thesis we only consider projective varieties, and will as such refer to them only
as “varieties”. Note that projective space P" is itself a variety.

We will write V/ K to mean a variety whose ideal can be expressed as I(V') = (f1,..., fm)
where f1,..., fin € K[X]. We will say that such varieties are defined over K. In general,
if welet I(V/K) =1(V)N K[X], then V is defined over K when I(V/K) = I(V).

Ezample 2.1.4. Consider the ideal in K[X,Y, Z] generated by Y2Z — X3, We write
ViYZ=X°

to mean the variety V with ideal I(V) = (Y2Z — X3). Notice that I(V) is generated by
a homogeneous polynomial, so it is homogeneous. We can also check that I(V') is prime
to see that V is in fact a variety.

Definition 2.1.5. The coordinate ring of a variety V/K is

K[X]
V= 1wy

The quotient field of K[V] is denoted K (V).

Definition 2.1.6. The dimension dimV' of a variety V' is the transcendence degree of
K(V) over K.

As we will see from the next definition, in this thesis we only care about varieties of
dimension one. In fact, if V' is variety with I(V') = (f), where f € K[Xy, X3, X3] is an
irreducible (homogeneous) polynomial, then dim V' = 1.

Definition 2.1.7. A curve is a projective variety of dimension one.

Definition 2.1.8. A curve C' with I(C) = (f1,..., fm) is smooth if every point is non-
singular. That is, if for all P € C, the rank of the m x n matrix

(afi/an(P))1gigm,1§j§n

iIsn—1.



Specifically, if I(C) = (f), then C' is smooth when

(o) 7, 7)

1 n

has rank n — 1. Note that we will see a much nicer characterization of smoothness in
Section 2.2.

Turning our attention to elliptic curves, the condition that there is a known point O
can now restated as saying there is a fixed K-rational base point O € F(K). With these
definitions, we now understand most of the definition of an elliptic curve, except for the
property that it is a genus 1 curve.

2.2. Weierstrass Equations. So far we have seen the definition of an elliptic curve
and some information about curves. Before defining the genus of a curve, we aim to
put elliptic curves into context by describing what they “look like”: namely, curves
given by Weierstrass equations. In fact, while the formal definition of an elliptic curve
is important, we will often find it more practical to consider the (equivalent) definition
in this section. Further, we will see in Section 2.3.5 that every elliptic curve can be
expressed as a Weierstrass equation— and conversely, that every smooth curve given by
a Weierstrass equation is an elliptic curve.

The labeling of the coefficients in the next definition may seem strange, but will be
explained in Example 2.3.23. It is also not something to focus on as we will shortly
change the coefficients to a different form.

Definition 2.2.1. A Weierstrass equation is an equation of the form
(1) Y2Z 4+ XYZ+a3YZ? = XP + 0y X*Z + ay X Z° + a2,
where a1, ...,a6 € K.

We have mentioned that an elliptic curve has a specified base point O. When an
elliptic curve (E, Q) is given by a Weierstrass equation of the form (1), then the base
point is O = [0,1,0]. We can also make (1) easier to work with through the following
process.

Definition 2.2.2. If f(Xq,...,X,) € K[X] is a polynomial written in homogeneous co-
ordinates, then we can dehomogenize f with respect to X; by setting X; = 1, for some
i€{0,...,n}toget f(Xo,..., Xi—1, Xix1,...,X,). Afterwards, we say that f’ is writ-
ten in dehomogeneous coordinates.

Conversely, if we start with dehomogeneous f'(Xo,...,X;—1, Xit1,...,X,), we can

homogenize f' by setting
Xo Xio1 Xin Xn
Xo,..., X,) = X1 ’(—... —>
f( 0 ) ) 1f Xi’ 3 Xz ) X@ ) ’Xi 9

where d € Z is the least integer so that f is a polynomial.

By dehomogenizing (1), we get the equation
(2) v:+ azy + asy = 23 + asx? + aur + ag
where y represents Y/Z and z represents X/Z. Note that homogenizing (2) gives

2 ()G ()~ () ) () +a))
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=Y?Z9? + ay XY 29 +agY 297 — (X3Zd3 +apX? 29 + ay X 29 + a6Zd) :
Then the least d € Z making this a polynomial is d = 3, which is exactly (1).

o

FIGURE 2. The elliptic curve E : y* = 2% — 2 with base point O included at infinity.

Of course, when we dehomogenize we are losing some information about the curve.
In the case of an elliptic curve, when we dehomogenize (1) to get (2), we only “lose”
the base point O = [0,1,0]. Specifically, this means that every point on a curve given
by a Weierstrass equation corresponds to a point on the dehomogenized curve except
for O, which is sent out to infinity. So, when working with a Weierstrass equation in
dehomogenized coordinates, we must remember that the base point is also on the curve
out at infinity.

So far, we have been working over an arbitrary field K. Now, suppose K has charac-
teristic char(K) # 2. This allows us to simplify the Weierstrass equation by completing
the square. If we set

1
ZJH§(Z/—G13?—G3),
then
E:y2+a1xy+a3y:x3+a2x2+a4l’+a6
simplifies to
E:y? =42% + (a3 + 4ap)2* + (2a4 + aras)w + (a3 + 4ag) .

Furthermore, if char(K') # 2,3, then we can simplify even further to get an elliptic curve
given by an equation of the form

E:y*=2+Az + B,

where A, B € K. We call this a short Weierstrass equation and we will rewrite our
elliptic curves into this form unless char(K) = 2 or 3.

In the previous section, we defined the property of a curve being smooth. You may
wonder why we define this next definition in this way, but this will become apparent in
the proof of Proposition 2.2.4.
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Definition 2.2.3. When E is an elliptic curve given by a short Weierstrass equation, we
define the discriminant to be

A = —16(4A% + 27B?).

Proposition 2.2.4. Let E be a curve given by a Weierstrass equation. Then E is smooth
if and only if A # 0.

Proof. Suppose E/K is smooth. We will prove this for when char(K) # 2, as the proof
in the general case is longer and no more interesting. When char(K) # 2, then F may
be given by a Weierstrass equation of the form

E:y*=42° + A2® + 2Bx + C..

Recall that E' is singular if the rank of the m x n matrix

(3fi/an<P))1gi§m,1§j§n

is n — 1. So, F is singular exactly at the points (a,0), when a is a multiplicity-two zero
of

f(z) =42° + Ax® +2Bx + C.

The polynomial f has such a zero if and only if its discriminant is zero— that is when
144ABC — 4A°C + 4A’B* — 128B* — 108C* = 0.

A computation reveals that the discriminant of f is equal to 16A, which finishes the
proof. |

This proposition will be very useful in later sections such as Section 4.5 as it gives us a
fast way to check if a curve given by a Weierstrass equation is non-singular and therefore
an elliptic curve.

2.3. Genus of Curves. So far, we have seen in Section 2.1 the definition of elliptic curves
as well as a brief introduction to the general theory of curves. The goal of this section is
to provide more concepts from algebraic geometry to complete our understanding of the
definition of an elliptic curve. Then, we will connect to the information in Section 2.2
by showing how the genus property of an elliptic curve guarantees it can be written in
Weierstrass form.

Many of the theorems in this section will not be proven as they are results from
algebraic geometry and, while necessary for defining elliptic curves, are not the focus of
this thesis.

2.3.1. Morphisms of Curves. We turn our attention to maps between curves. Consider a
function f € K(C) in the function field of a curve C. For a point P € C, if we can write
f in the form f = g/h for some g, h € K[C] with h(P) # 0, then we say f is defined at
P. More succinctly put, we say that f is defined at P when f is in the local ring at P,
which is the ring

K[Clp={f € K(C)| f=g/h for some g,h € K[C] with h(P) #0}.
The ring K[C]p is a discrete valuation ring, so it is a principal ideal domain with

exactly one maximal ideal Mp = (t) generated by a (not necessarily unique) element
t € Mp. We call ¢t a uniformizer for C at P.
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Definition 2.3.1. We define the order of vanishing of f at P,
ordp : K(C) = ZsoU {0},
by ordp(f/g) = ordp(f) — ordp(g), where
ordp(f) = inf{m € Z | t7™f € K[C]p for a uniformizer ¢ }
for all f € K[C]p.

Note that by definition, the order of a uniformizer ¢ for P is ordp(t) = 1. We say that
f is defined at P when ordp(f) > 0. More specifically, we say f has a zero at P when
ordp(f) > 0. Otherwise, if ordp(f) < 0, we say that f has a pole at P.

The following two theorems will be of use in Section 2.3.5.

Proposition 2.3.2. If C is a smooth curve and f € K(C), then ordp(C) = 0 for all but
finitely many points P € C'.

Proposition 2.3.3. If C is a smooth curve and f € K(C) has no poles, then f € K.

Definition 2.3.4. For two curves C1,Cy CP* amap ¢ : C; — (s is called a rational map
if there exist fy,..., fn € K(C) such that ¢ is given by

whenever fo(P),..., fi(P) are all defined.

Definition 2.3.5. A rational map ¢ : C7 — C is called a birational map if there exists
an inverse ¢! : Cy — (1, that is also a rational map, satisfying ¢ lop =gpop™t =1

Note that these rational maps may not be defined on all of C,. However, it is most
useful to us to only work with rational maps that are defined on all of C;. We will refer to
these types of rational maps as morphisms. A naive approach to properly defining these
morphisms would be to simply require that each fy,..., f, in Definition 2.3.4 be defined
on all of C';. The problem with this approach is that by choosing the fy,..., f,, we may
have described ¢ in such a way that the map appears to not be defined everywhere, even
though it actually is.

As an analogy to this concept, suppose we were to define the constant-1 function on
R by

ONE:R - R, ONE(x)zg.
Written in this form, it may appear that ONE is not defined at 0, since 0/0 is undefined,
but if we rewrite ONE in the form ONE(z) = 1, then we see that it is indeed defined on
all of R.

So how do we “rewrite” rational maps as we did with our function in R? Let ¢ : C; —
Cs be a rational map given by ¢ = [fo,..., fn] and consider a point P € Cy. If there

exist homogeneous polynomials go, ..., g, € K[Xo,...,X,] all of the same degree such
that go(P),. .., gn(P) are not all zero and

figj = f;9: (mod I(CY)) for every i,5 € {0,...,n},
then we say ¢ is defined at P and we may write

p(P) = [90(P), -, gn(P)].
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Definition 2.3.6. A rational map ¢ : C; — C5 between curves is a morphism if it is
defined everywhere on C';. Such a morphism is called an isomorphism if there exists an
inverse o' : Cy — C} such that pop ™l =plop =1

Ezample 2.3.7. The map ¢ : P? — P? given by

¢ =[X* XY, 2%
is a rational map, but not a morphism. Note that X? XY, and Z? have no common
factors. However the point [0 : 1 : 0] is a zero of all three functions and since I(P?) = (0),
there is no way to modify the aforementioned functions modulo I(PP?).

Let V' be the variety
ViYZ =X+ 25
Then ¢ : V — P? given by
= [X?, XY, 7%

does define a morphism of curves. To see this, we need to show that ¢ is defined every-
where on V. Notice that X2, XY, and Z2 all have the same degree. We only need to
check if ¢ is defined at [0, 1, 0] since the only solution to

X=Xy =2=0
other than X =Y =7 =0is when X = Z =0 and Y # 0. Notice that
(X*)? = (Z2(v? = 2%))* (mod I(V)).

Then,
=X XYZ2]
= (XY -2 XY (Y? = Z2°)%, Z°(Y* = Z2°)°]
= [X*(Y? - 2%, XY (Y? - Z7°)%, X°]
= [X(¥Y? -2 Y(Y? - 2°)%, X°].

So, ¢([0,1,0]) = [0, 1, 0], which shows that ¢ is defined at [0, 1, 0].

To reiterate our analogy with ONE : R — R, we started with ¢([0,1,0]) = [0,0,0],
which is undefined in P? just as 0/0 is in R. Then we rewrote ¢ so that it was not
undefined at [0, 1, 0] just as we rewrote ONE.

An important result from algebraic geometry is the following theorem.
Theorem 2.3.8. A morphism between curves is either constant or surjective.

A morphism ¢ : C; — Cy also induces a map ¢* : K(Cy) — K(C}), called the “follow
by f map”, given by ¢*(f) = f o¢. Using this, we can define the degree of a morphism.

Definition 2.3.9. The degree of a morphism of curves ¢ : C; — Cy is
deg p = Z ordp (¢ tym))
Pep~1(Q)

where ) € (5 is any fixed point of 5 and t,(p) is a uniformizer at ¢(P) = Q.

We call the summand ordp(¢*t, () the ramification index of ¢ at P. We may denote
this by e,(P). If e, (P) = 1, we say ¢ is unramified at P.
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Example 2.3.10. Let ¢ : P* — P! be given by
p([X,Y]) = [XP(X - Y)% V7).

Of course, P! is a smooth curve and ¢ is non-constant, so we may use the above propo-
sition to find the degree of ¢. We can think of P! as the points [z,1] € P!, which are
determined solely by the coordinate x, together with [1,0]. We call the collection of these
r the affine line A', so that P* = A U {0 }.

Notice that the only point sent to [1,0] under ¢ is [1,0]. Then ¢ sends every point of P!
other than [1,0], i.e., points on Al to other points on A'. We can model the restriction
of v to A! by setting Y = 1 and dropping the second coordinate. Denote this restriction
by ¢ = ¢|,, so that ¢ : Al — Al is given by

Y(r) =a2(x —1)*.

The zeros of ¢ are 0 and 1 and it is easy to see that ordy(¢)) = 3 and ord;(¢) = 2. The
points 0,1 € A® correspond to [0, 1], [1,1] € P!, respectively, and are the only points in
the preimage of [0, 1] € P!. Applying the proposition we get

degp = ew([ov 1]) + ecp([L ))=3+2=5.
The following is a useful result about the degree of a morphism of curves.

Proposition 2.3.11. If ¢ : C, — Cs is a degree 1 map between smooth curves, then ¢
s an isomorphism.

2.3.2. Diwvisors.

Definition 2.3.12. A divisor D on a curve C'is a formal sum
D=> np(P)

of points on C', where each np € Z and np = 0 for all but finitely many terms. The
degree of such a divisor is

deg(D) = Z np.

pPcC

Note that the degree deg(D) of a divisor is finite because np = 0 for all but finitely
many terms. The divisors of C' form a group denoted Div(C'). The degree-0 divisors form
a subgroup which is denoted Div"(C).

Ezxample 2.3.13. Let P,Q € C. Then 3(P) + 2(Q) is a divisor on C. Another divisor
is (P). We write the divisor in parentheses to distinguish between meaning the point P
and the divisor (P).

Definition 2.3.14. A divisor is principal if it is of the form

> " ordp(f)(P)

pPeC

for some f € K(C)*. We denote such a divisor by div(f). We say that two divisors
D1, Dy are linearly equivalent if Dy — Dy is a principal divisor. When this occurs, we
write D1 ~ Dz.
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Remark 2.3.15. Note that a divisor of f is an important device that keeps track of all of
its zeros and poles. We will see in Theorem 2.3.30 that divisors can be used to construct
functions with specific poles and zeros.

Definition 2.3.16. We say a divisor D = . np(P) is positive if np > 0 for each
P € C. When this occurs, we write D > 0.

Proposition 2.3.17. Let C be a smooth curve and f € K(C)*. Then deg(div(f)) = 0.
Also, div(f) = 0 if and only if f € K"

The principal divisors form a normal subgroup of Div(C') and we denote the quotient of
Div(C) by the principal divisors by Pic(C). Likewise, we define Pic’(C) in the same way,
replacing Div(C) with Div®(C). We call Pic(C) the Picard group of C. The importance
of the Picard group will be seen once we introduce differentials.

Now that we have defined isomorphisms of (elliptic) curves, we turn our attention
briefly to an elliptic curve F given by a Weierstrass equation

E:y’=2>+Az+B.

Definition 2.3.18. The j-invariant of an elliptic curve E given in short Weierstrass form
is the value

_ 1728(4A)°

= A ,

The j-invariant is called such because it is invariant under isomorphism of curves. In
fact, we also have the following stronger statement.

J(E)

Proposition 2.3.19. Let E and E' be elliptic curves. Then E and E' are isomorphic if
and only if j(E) = j(E").

We omit the proof of the next proposition.

Proposition 2.3.20. Any two Weierstrass equations for E are related by a change of
variables of the form

(z,y) = (ux 4+ 7 u’y + su’s + 1),
where r,s,t € K and u € K*.

When F is given by a short Weierstrass equation, any such map has r = s =t = 0.
We can see this by expanding the Weierstrass equation

v =2+ Az + B.
The left hand side becomes
(u?’y + sulx + t)2 = uSy? + sPutz? + 2 4 2sulyx + 2ty + 2tsu’n
and the right hand side becomes
(uzx + r)3 + A(uQx + 7”) + B = ub2® + 3uta?r + 3ular® + 13 + Av’x + Ar + B.
Putting them together we get
uSy? + sPuta? + 2 4 2sulyx + 2ty + 2tsun
=uS2? + 3uta?r + 3uar? + r® + Aulz + Ar + B,
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which simplifies to
uSy? + 2suyx + 2tu’y
=ul2® + (Bulr — sPut)2® + (BuPr? + Au® — 2tsu®)x + (P + Ar + B — t).

This new equation is in short Weierstrass form when u # 0, 2su® = 0, 2tu® = 0, and

utr — s*u* = 0. So, we must have r = s = t = 0. Consequently, any two short
Weierstrass equations are related by a change of variables of the form
(2,y) = (Wz,u’y)

which is dependent solely on v € K*.
2.3.3. Differentials.

Definition 2.3.21. The space of differential forms of a curve C' is the set (2 generated
by symbols of the form dz where z € K(C). For all z € K and all 7,y € K(C), we have
the following relations:

(1) dz = 0.

(2) d(z +y) = dx + dy.

(3) d(xy) = xdy + y dz.
Q¢ is a K-vector space of dimension one.

Some intuition for these relations, specifically 2 and 3, is that they resemble the sum
and product rules, respectively, for derivatives of functions from R to R.

Definition 2.3.22. For a divisor D € Div(C'), we define the vector space associated to D
to be
LD)={f € K(C)" | D+div(f) =20} U{0},

which is a K-vector space of finite dimension. Notice that if we take some non-zero
f € L(D), then

0 = —degdiv(f) < —deg(—D) = deg(D).
This means that if deg(D) < 0, then £(D) ={0}.

Example 2.3.23. Consider the spaces L(n((’))) forn =0,1,.... When n = 0, this space
has dimension 1. For all other n, this space has dimension n. We will see what a basis
for this space looks like for each n =0,1,...,6.

When n = 0, dim <£(n(0))) = 0, so the vector space contains just the constant

functions and has basis {1 }. When n = 1, the dimension does not change, so we do not
get any new functions in the basis.

When n = 2, the dimension is 2, so we get a new function, which we will denote x,
that has a pole of order 2. Likewise, when n = 3, we get a new function, denoted y, with
a pole of order 3. So far we have the basis { 1,2 } when n =2 and {1,z,y } when n = 3.

When n = 4, it may appear as though we should get a new function with a pole of
order 4, but we do not, since 2% has a pole of order 4, so we have { 1, z,y, 22 }. Likewise,
for n = 5, we have xy, which has a pole of order 5, so we have {1,z,y, 2% zy}. For
n = 6, we have y?, which has a pole of order 6, but we also have z3. Thus, for n = 6 we
have seven functions: {1, z,y, 2% zy,y* 2> }. We are stopping at n = 6 for reasons that
will become clear in Theorem 2.3.31.
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Proposition 2.3.24. Let w € Q¢ be a non-zero differential and let t be a uniformizer
for a point P € C. Then there exists a unique function g € K(C) such that w = gdt. We
denote g by w/dt. Furthermore, ordp(g) is independent of choice of t, i.e., it depends
only on w. We then denote ordp(w) = ordp(g).

Definition 2.3.25. For a differential w € ¢, we can associate to it the divisor div(w)
defined by

div(w) = Y ordp(w)(P).

PeC
Notice that for a non-zero differential w € ¢, we have a map w — div(w) which sends
Q¢ — Div(C). Then, we can evaluate Div(C') — Pic(C) to get a map Q¢ — Pic(C).

Definition 2.3.26. The canonical divisor class on C' is the image in Pic(C) of the map
Q¢ — Pic(C). The elements of the canonical divisor class on C' are called canonical
divisors.

The idea behind canonical divisors is that if we take two (non-zero) differentials w, @ €
Q¢ such that w = fw, for some f € K(C)*, then

div(w) = div(f) + div(w) .
The result of this is that canonical divisors of a curve C' are all linearly equivalent.

2.3.4. Riemann-Roch. We finally have a sufficient amount of theory to state the Riemann-
Roch Theorem, which defines the genus of a curve.

Theorem 2.3.27 (Riemann-Roch). Let C' be a smooth curve and K¢ a canonical divisor
on C. There exists an integer g > 0 such that for every divisor D € Div(C),

dim (£(D)) — dim (L(K¢ — D)) = deg(D) —g+1.
The integer g > 0 is called the genus of C. Notice that in general, when D = 0, we
have L(D) ={0}, so
1—dim (L(K¢)) =0—g+1,
which means dim (E(KC)) = 1. Furthermore, if we set D = K, then the Riemann-Roch
theorem tells us that
dim (L(K¢)) — 1 = deg(K¢) — g+ 1,
so deg(K¢) =29 — 2.
Now suppose deg(D) > 2g — 2. In particular, this means that deg(Kc — D) < 0, so
L(Ke—D)={0}. Then,
dim (£(D)) = deg(D) —g + 1.
The above discussion can be summarized as the following corollary to Theorem 2.3.27.

Corollary 2.3.28.
(1) dim (L(K¢)) = g.
(2) deg(Kc) = 29 — 2.
(3) If deg(D) > 2g — 2, then dim (£L(D)) = deg(D) — g + 1.

Now that we have defined the genus of a curve, we can give the following two theorems.
In particular, they show a distinction between genus 1 and genus 0 curves.
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Theorem 2.3.29. Let C' be a curve of genus 1 and let P,Q) € C. Then (P) ~ (Q) if
and only if P = Q.

Proof. If P = @, then clearly (P) ~ (Q). If (P) ~ (Q), then there exists f € K(C) such
that div(f) = (P) — (Q). Notice that f € £((Q)). The Riemann-Roch theorem tells us
that

dim £((Q)) = deg(Q) = 1.
SO E((Q)) contains only constant functions. Then f is constant and P = Q. [ |

Theorem 2.3.30. Let C/K be a smooth curve. The following are equivalent over K :

(1) C has genus 0.
(i1) There exist P, € C such that (P) ~ (Q) but P # Q.
(iii) C = P".

Proof. (i) = (ii). Suppose C has genus g = 0 and let @ € C. By the Riemann-Roch
theorem, since deg(Q) =1 > 2g — 2,

dim £((Q)) = deg(Q) —g+ 1 =2.
Then £((Q)) contains all constant functions in K as well as the function X.

(ii) = (iii). If (P) ~ (Q), then there exists f € K(C) such that div(f) = (P) — (Q).
Using f we can construct a morphism F : C' — P! by

1 pu—
[f(2),1] z#@Q
It suffices to show that deg F' = 1. Recall that for any choice of S € P,
deg F' = Z er(R) = Z ordg(tso F),
ReF~1(S) ReF~1(S)

where tg € K(P!) is a uniformizer for P* at S. If we take S to be [0,1] € P! then
F~1([0,1]) = P because P is the only zero of f. Notice that the maximal ideal Mj;; in

the local ring K[P']g 1) is generated by X € K(P'), so X is a uniformizer for P* at [0, 1].
Then, X o F = f, so P is a multiplicity 1 zero of X o F'. Thus,

deg FF=ep(P)=1,

so C' =P

(iii) = (i). By a corollary to the Riemann-Roch Theorem, the genus of C' is equal to
the dimension of the L(K¢) as a K-vector space, for any canonical divisor K.

Let t be a coordinate function on P'. Notice that

ordes (dt) = ords (— t2d(1/t)) — 2,
and every P € P'\ { o0 },
ordp(dt) = ordp (d(t — P)) = 0.
So, div(dt) = —2(o0). Then, for every non-zero divisor w € Qp:,
deg (div(w)) — deg (div(dt)) = -2,
so w is not regular by definition. Let K¢ € P!. Then
L(Ko)={w € Qp1 | wregular } = 0.
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Since C'is isomorphic to P!, there exists some canonical divisor K¢ for C' with £(K¢r) =
. By a corollary to the Riemann-Roch Theorem, the genus of C' is the dimension of
the L(K¢r) as a K-vector space, for any canonical divisor K. Thus, the genus of C is

dim(0) = 0. [ ]

2.3.5. Connection to Weierstrass Equations. We are finally ready to prove the connection
between elliptic curves given by Weierstrass equations and elliptic curves defined as genus
one curves.

Theorem 2.3.31. Let E/K be an elliptic curve. Then E is isomorphic to some curve
C:Y?Z+a XY Z+a3Y7Z? = X34+ ayX?Z + an X7 + ag 23,
with ay, . ..,as € K and the base point O corresponding with [0,1,0] € P2

Proof. Recall that in Example 2.3.23 we showed that £(6(0)) has dimension 6 and
contains the seven functions 1, z, y, 2%, xy, y?, 2°. Thus, there exists A;,..., A; € K such
that
Ay 4+ Aoz + Asy + Ayx® + Aszy + Agy® + Azz
There exists a change of variables which puts this equation into a Weierstrass form.
Specifically, we replace (x,y) with (—AgArx, AgA2y) to get
A1 + Ag(—AﬁA'ﬂU) + Ag(AGAgy) =+ A4(—A6A7I')2
+ As(—As A7) (As ATy) + As(AsATy)? + A7(—As A7)’
= A} — AgAgArr + AsAgAry + Ay AZAZE? — oy AZAZAszy + ARAZy® — ATASYS .
Then dividing by A?A2 gives
A A2A6A7x A3A6A7y n A4A§A$x2 B AZAZ A5 y A%A%yz B AL A3 3
AZAG AR AZA AZA AZAG AZATT ATAG
Ay A2+A3+A42 As +1
ARAY ARAR ARART S Ay AjAL T A
So, we have a map ¢ : E — P2 given by ¢ = [z, y, 1] whose image is given by a Weierstrass
equation. Say C'is the curve given by this Weierstrass equation. The restriction ¢ : £ —
C' is a morphism of curves, so it is surjective.
We now want to show that ¢ is a degree-one morphism. From Example 2.3.23 we know

that x has one pole, namely an order 2 pole at O. Likewise, y has only an order 3 pole at
O. Then, the ramification index of ¢ at O is 1, since only 1 divides both 2 and 3. Thus,

deg(p) = e,(0) =1.
Then ¢ is a degree-one morphism, so it is an isomorphism by Proposition 2.3.11.

The last thing we need to show is that C' is smooth. Suppose, by contradiction, that
C is singular. A fact from algebraic geometry is that whenever a curve is singular, we
can find a degree-one rational map ¢ : C — P'. Then ¢ o ¢ : E — P! is a degree-one
map of smooth curves, so it is an isomorphism. However, Theorem 2.3.30 then tells us
that E has genus 0, which contradicts that it is an elliptic curve. |

Yt — 2P

Lemma 2.3.32. Let E be given by the Weierstrass equation
Y2 4 arxy + asy = 0 + asx® + agx + ag .
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Then the differential w = dx/(2y + a1x + a3) satisfies div(w) = 0. This is called the
mvariant differential.

The next theorem is the converse of Theorem 2.3.31, which proves the relationship
between Weierestrass equations and elliptic curves.

Theorem 2.3.33. Let
C:Y?’Z4+aXYZ+a3YZ? = X> + a, X7 + ay X 7* + ag Z*
be a smooth curve with ai,...,as € K. Then C is an elliptic curve over K with base
point O = [0, 1,0].
Proof. The above lemma says that the invariant differential has div(w) = 0. The
Riemann-Roch theorem tells us that
deg (div(w)) =29 — 2,

so g = 1 is the genus of E. We then have that E is a smooth curve of genus 1 with base
point O = [0, 1,0], so it is an elliptic curve. [ |
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3. ISOGENIES

3.1. Group Structure. Our goal for this section is to establish a group structure for the
points of £ and for E(K), the K-rational points on . We will then introduce isogenies
in 3.2 and see how they relate to the group of points on an elliptic curve.

Consider an elliptic curve in short Weierstrass form

E:y=2>+Az+ B
defined over a field K. Suppose we have two distinct K-rational points P = (py, p2) and
Q = (q1,¢q2) on E and draw the line

L:y—py= (u>($—p1)

P1—q
connecting P and (). For now, ignore the possibility of p; = ¢y, so that we do not divide
by zero. It is easy to see that L will always intersect E at a third point R = (r1,79).
Moreover, R will also be another K-rational point, since L has slope
P2 — Q2
P1— ¢
When p; = ¢, the line L does not appear to intersect F at a third point. However,
we have to remember that when our Weierstrass equation is written in non-homogeneous
coordinates, we still have the base point O € E(K) out at infinity. Then the third point
where L intersects E will be O.

€ K.

Definition 3.1.1. Using the information from the above discussion, we can define a “com-
position rule” % : E x E — E as follows: Draw the line L from P to (). Then P % () is
the third point on L N E.

It may seem at first that this composition rule could be a group operation on FE.
However, notice that, for example, we would not be able to define an identity element,
as P * () is never P or (). Instead, we perform one extra step to define the group law.

FiGure 3. Illustration of the group law on an elliptic curve.

Definition 3.1.2. Let 4+ : E x E — E be defined by
P+Q=0%(P*xQ).
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When F is given by a Weierstrass equation, then O is sent out to infinity, so our group
law becomes:

P+Q=—-(P*Q).
Theorem 3.1.3. (E, —l—) 15 an abelian group, with + defined as above.

Proof. Notice that the operation + is well-defined, because * is a well-defined operation
on E(K). The identity of this group is O and it is obvious that O + O = O. It is
also clear that every element P € E(K) has an inverse, namely P * O. Notice that
PxQ=Q%P,so

P+Q=0%P*Q)=0%(Q%P)=Q+P.

It remains to show that 4 is an associative operation, which we will omit as it is long
and not very interesting. ]

Corollary 3.1.4. The K -rational points E(K) form a subgroup of E.

Proof. In the discussion at the beginning of this section we explained that * also defines
an operation on E(K), i.e., that P* Q € E(K) if P,Q € E(K). Then this extends to +
to say that P+ Q € E(K) if P,Q € E(K). [ |

FIGURE 4. The group law with the base point included at infinity.

3.2. Introduction to Isogenies.

Definition 3.2.1. An isogeny is a morphism ¢ : E; — F, of elliptic curves which preserves
the base point, i.e., p(O) = (O).

Notice that there is a trivial constant isogeny which sends every point to O. Since
this is the only constant isogeny, Theorem 2.3.8 tells us that every non-trivial isogeny is
surjective.

Recall that since isogenies are morphisms of curves, we already know some information
about them from Section 2.3.1.
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Ezxample 3.2.2. An important isogeny is the multiplication-by-m map [m] : £ — FE
defined by

(P+P+.-. 4P m >0
m times
[m)(P) = (=P)+(=P)+--+(=P) m<0,
—m‘t,irnes
(@) m=20

\
The map [m] is defined on all of E and satisfies [m](O) = (O), so it is indeed an isogeny.
Note that the trivial isogeny is [0]. We will see in Proposition 3.2.5 that deg([m]) = m?

where the degree was given in Definition 2.3.9.

The kernel of [m] is called the m-torsion points of E and is denoted E[m|. The torsion
subgroup of E is the subgroup Fi.s containing all elements of finite order. That is, it is
the union

B = | Elm].
mEZZO

The set of isogenies between two elliptic curves F; and FE, is denoted Hom(FEy, Es). In
fact, (Hom(El, E,), +) is an abelian group with + defined by

(o +¥)(P) = (P) + ¢(P),
The group operation on (Hom(El, E,), —i—) is well-defined since

(¢ +9)(0) = ¢(0) +¢(0) = O,

making ¢ + 1 an isogeny. The identity element is the trivial isogeny [0] and the inverse
of an isogeny ¢ is the map (—¢) defined by

(—p)(P) = —¢(P).
Associativity and commutativity easily follow from the group structure on elliptic curves.

We have just seen that isogenies are closely related to the group structure of E(K). In
fact, isogenies respect the group law on F(K). Since every isogeny is a morphism that
fixes O, which is the identity of E(K), we have that the isogenies are exactly the group
homomorphisms of F(K).

The set Hom(E, E) of isogenies from an elliptic curve E to itself forms a ring with
multiplication given by composition of isogenies. We call Hom(FE, E) the endomorphism
ring of £ and denote it by End(FE). This ring is one of our principal objects of interest
in this thesis. The group of units in the endomorphism ring is called the automorphism
group and is denoted Aut(F).

Definition 3.2.3. Every degree-m isogeny ¢ : F; — FE, comes with a unique isogeny
¢ : Ey — E, called the dual isogeny to ¢, which satisfies ¢ o ¢ = [m)].

To see that this isogeny ¢ is unique, suppose by contradiction that there exists another
isogeny ¢ : Fy — E satisfying ¢ o ¢ = [m]. Specifically, we would have
pop=top=[m],
SO
(Pog) = (Poy)=[m]—[m]=10].
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Then,
so either ¢ =0 or  — ¢ = 0.

Proposition 3.2.4. Let p, v : By — Fy and )\ : Ey — FEs3 be isogenies. Then
/\/o\gpzﬁo/): and m:@%—{/}.

We now have enough information to show that the degree of the multiplication-by-m

map is m?.

—~

Proposition 3.2.5. [m] = [m] and deg[m] = m?.

Proof. 1t is clear that [/(ﬁ = [0] and [/1\] = [1]. From Proposition 3.2.4, we know that

——— e~~~

[m +1] = [m] + [1] = [m] + [1].

In particular, this means

o~ o~ o~

) =+ 1 -+ 1] =[]+ [ -+ [ = 1]+ (1] + -+ 1] = [m].

(.

Vv Vv Vv
m times m times m times

We then have

o~

[deg([m])] = [m] o [m] = [m] o [m] = [m?],
so deg([m]) = m?. [ |
3.3. Endomorphism Ring. As mentioned when we introduced the endomorphism ring,

it is one of the main objects of interest in this thesis. This section serves to provide useful
theory of the endomorphism ring and explain why it is interesting.

Proposition 3.3.1. End(E) has no zero divisors.

Proof. 1f ¢,1 € End(E) are such that ¢ = 0, then 0 = deg(¢v) = deg(y) deg(¢). So,
either deg(y) or deg(+) must be 0, which implies that either ¢ or ¢ is 0. [ |

Proposition 3.3.2. Let E/K be an elliptic curve and let ¢, € End(E). Then the
degree map deg : End(E) — R has the following properties:

(1) deg(0) = 0.
(2) deg() = 0. R
(3) deg(v) + @) = deg(v)) + deg() + b + G
(4) deg(my) = m® deg(v)).
Remark 3.3.3. A map that satisfies properties 1-4 is called a quadratic form.

Definition 3.3.4. The characteristic polynomial of an isogeny 1 € End(F) is
cy(a) = 2* = Te(¥)x + deg(¥),
where its trace is Tr(¢) = ¢ + QZ

Proposition 3.3.5. An isogeny 1 € End(F) is a zero of its own characteristic polyno-
mial, i.e., cy(1) = 0.

Theorem 3.3.6 (Hasse). If ¢ € End(F), then | Tr(¢)| < 24/deg(v)), where | - | denotes
the standard absolute value.
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Proof. Let ¢ € End(F) and = € Q be given and set x = m/n. Recall that the degree
map deg is non-negative. Then

m2 m

=———T d
cy() = —5 = Tr(¥) + deg(¥) ,
so using the properties of a quadratic form given in Proposition 3.3.2 we get
n*cy(r) = m?® — nm Tr(y) + n* deg(v) ,
= deg(m) + deg(ny) — nm Tr(y),

(
= deg(m) + deg(ny)
(

-~

( +m(—n) + (—nd)m,
= deg(m) + deg(nt) + m(—n) + (—nib)m,
= deg(m — n1)

>0.

The result of this is that either c(z) has 0 or 1 roots in Q, so the discriminant of ¢, is
(—Tr())? — 4deg(¢)) < 0. We then conclude that | Tr(+))| < 24/deg(v)). [ |

Our goal now is to explain what the structure of End(F) looks like.

Definition 3.3.7. Let &7 be a finite-dimensional algebra over Q. An order #Z of &/ is a
subring of & which is Z-lattice in &/ and satisfies Z ® Q = /.

Definition 3.3.8. A quadratic imaginary field is a number field of the form Q(\/a), where
d < 0.

Definition 3.3.9. A quaternion algebra (over Q) is an algebra 7 of the form

A =Q+Qa+QF+Qaf,

with o, 3% € Q both less than 0, and Sa = —af3. In particular, o and 3 commute with
every element of Q.

Example 3.3.10. Let & = Q+ Qa+ QB+ Qaf be a quaternion algebra and consider the
set

X ={w+za+yB+zab|w,x,y,z€Z}

Clearly Z is a subring of & and is a Z-lattice in /. We also have Z @ Q = &7, so Z is
an order in o7

With these definitions in place, we can now state the following result:

Theorem 3.3.11. Let E be an elliptic curve. Then End(F) is one of the following: 7Z,
an order in a quadratic imaginary field, or an order in a quaternion algebra.

It turns out that if char(K) = 0, then End(E) cannot be an order in a quaternion
algebra. This is one of the reasons why studying elliptic curves over finite fields is
interesting, as we can have elliptic curves with these unusually large endomorphism rings.
This is explored in greater depth in Section 4.4.

We now turn our attention briefly to the automorphism group of an elliptic curve.
Recall that Aut(E) is the group (under composition) of invertible elements of the ring
End(FE).
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Theorem 3.3.12. Let E/K be an elliptic curve. The size of its automorphism group
depends on the characteristic of K and the j-invariant of E. Specifically:
(24 char(K) =2

12 char(K) =3
#Aut(E) =<6 Jj(E)=0 and char(K) # 2,3

4 (E) = 1728 and char(K) # 2,3
(2 (E) #0,1728 and char(K) # 2,3

(

Proof. We will show the case when char(K) # 2,3. Let E be given by the short Weier-
strass equation

J
J

E:y =2+ Az + B,
for some A, B € K. Recall from Proposition 2.3.20 that every change of variables between
two Weierstrass equations is of the form

(z,y) — (WPz + rudy + sux + 1),

for some r,s,t € K and u € K. We have also seen that when E is given by a short
Weierstrass equation, any such map has r = s =t = 0. The image of the map (z,y) —
(u?z, udy) is the curve given by the equation

uy? = ub2® + Aux + B,
which is birationally equivalent to
y? = 2® + Au'z + BuS .
Thus, this map is an automorphism exactly when A = Au* and B = Bu®. If j(E) = 1728,
then B = 0, so v must satisfy u* = 1. Then # Aut(E) = 4 and Aut(E) has an element

of order 4, so Aut(E) = Z/4Z. 1f j(E) =0, then A =0, so u® =1 and Aut(F) = Z/6Z.
Lastly, if j(E) # 0, 1728, then we only have u = 1 or u = —1, so Aut(F) = Z/27Z. |

Remark 3.3.13. The proof for the cases when char(K) = 2,3 are omitted because they
are significantly longer, yet do not provide much additional insight. The idea is to mimic
the same process, but for the much longer equations resulting from Proposition 2.3.20.
The important difference to make note of when char(K) = 2,3 is that Aut(FE) is not
necessarily cyclic like it was in the proof above. Furthermore, Aut(FE) is not necessarily
abelian.

The proof of Theorem 3.3.12 also gave us some information about the structure of
Aut(E). Specifically, when char(K) # 2,3, Aut(E) is cyclic. Notice that the isogeny
[1] : E — E given by P — P is always in Aut(F). Specifically, it is the identity element
of the group. Another isogeny that is always in Aut(E) is [-1] : £ — E given by
P — —P. So when # Aut(E) = 2, it is the set Aut(E) = {[1],[-1] }.
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4. ErrLiptic CURVES OVER FINITE FIELDS

We have now learned a significant amount about the theory of elliptic curves over an
arbitrary field K. The rest of this thesis is dedicated to the case when K is a finite field.
Before we explore elliptic curves, we give a brief overview of finite fields.

4.1. Preliminary Theory of Finite Fields. From here on out, unless otherwise speci-
fied, p € Z will be a prime and ¢ = p” will be the rth power of p for some positive integer

Proposition 4.1.1. For every prime p, there exists a unique field of order p (up to
isomorphism). We denote this field F,, and call it the finite field of order p. Specifically,
F, = Z/pZ, with the usual addition and multiplication.

Remark 4.1.2. T, is sometimes denoted GF(p), where GF stands for “Galois field”.

By taking finite extensions of [F,,, we obtain finite fields whose order is a prime power.
Specifically, if L/IF, is a field extension with [L : F,| = r, then L is a finite field of order
p" and is denoted F,» = IF,. There is a unique field of order p" (up to isomorphism) for
each prime p and power r. The characteristic of IF,- is p for every r € Z.

Explicitly we can construct F,- by

~ FplX]
X))

where f(X) € F,[X] is an irreducible polynomial of degree .

Ezample 4.1.3. Let f(X) € Fy(X) be given by f(X) = X? + X + 1. Then f(X) is an
irreducible polynomial of degree 2, so

P, o~ Fy[X]
PTX2 X+ 1

Proposition 4.1.4. If n € Z is not a prime power, then there is no field of order n.

To summarize, Propositions 4.1.1 and 4.1.4 tell us that there exists a unique finite field
of order F, if and only if ¢ € Z-( is a prime power.

Proposition 4.1.5. F, is not algebraically closed.
Proof. Let F, = { a1, ..., 0, } and consider the polynomial f(z) € F,[z] given by
fl@) =1+ —a)(z—a) (v —a).

Then f(a;) =1 for all a; € F,, so IF, is not algebraically closed. [ |

So, the closure of F, cannot be a finite field. Specifically, the closure of F, is

Fo= |J Fom.

m€Z>Q
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4.2. Inverse Limits. In this section we introduce inverse limits which we will use to
construct useful objects, specifically, the /-adic integers and the Tate module of an elliptic
curve. These constructions will lead to Theorem 4.2.9, Tate’s Isogeny Theorem, which
gives us a lot of information regarding isogeneous elliptic curves over F,.

Definition 4.2.1. Let { G; }iep be a set of groups and {¢;; : G; — G; }i<jep a set of
group homomorphisms, indexed by a directed set D. The pair ({ G; }iep, { )i : G; —
G }i<jep) is called an inverse system of groups if for all 4, j, k € D,

(1) pii(g) =g for all g € G,
(2) ori = ©ji © pr; whenever ¢ < j < k.

Definition 4.2.2. Let G = ({G; }iep,{ ¢ji : G; = G, }i<jep) be an inverse system of
groups. The inverse limit of G is

@(G):{aeHGi

With this definition in place, we can construct the ¢-adic integers.

a; = @j;i(a;) whenever i < j } :

Definition 4.2.3. Let ¢ € Z be a prime. The ring of {-adic integers is
Lo =4 ({Z/0"L Ynezoo A eV 1 Z/PL — ZUL }icjen.,) »
where ev is the evaluation map. Specifically, this inverse limit is

Zg:{oze [ z/ez

n6Z>0

evji(aj) = a; for all i < j } ,

:{(an):Z>0—>Z

Being an inverse limit, the f-adic integers carry information about Z/¢"Z for every
n € Z~g. The following example serves to explain what that means.

a; = a; (mod () for all i < j } :

Ezample 4.2.4. In this example, we will show that by generalizing statements to Z/("Z
for every n, then we can learn information about the inverse limit Z,. Specifically, we
will deduce something about the 5-adic integers Zs. To begin, we will show that for every
k > 1, there exists z), € Z/5*Z such that

(1) r; +1=0(mod5").

We prove this by induction. For the base case, notice that (2)? + 1 = 0 (mod 5).

Now suppose there exists a solution z; € Z/5*Z to 22+ 1 = 0 (mod 5%) for some k > 1.
Note that either 2 = 2 or —z = 2 (mod 5), so suppose that zy = 2 (mod5). Then, by
definition, there exists integers m,n € Z such that z, = m5 + 2 and 22 = n5* — 1. 1
claim that (zj + n5%)? + 1 = 0 (mod 5*1).

(z + 152 + 1 = 22 4 22,n5" + n?52% + 1
= (n5* — 1) + 2(m5 + 2)n5* + n?5?" 4+ 1
= 5"(n + 2n(mb + 2)) (
= n5"(1 + 2mb + 4) (mod 5+
= n5" (1 4 2m) (
=0 (
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This completes the induction step and proves (7).

Notice in the above proof that we can find two solutions to the congruence modulo
5%, for every k. In fact, it is not difficult to show that these are the only two solutions.
This allows us to make the following conclusion about the 5-adic integers: The equation
2?2 + 1 = 0 has exactly two solutions in Zs.

The second useful object constructed by an inverse limit we will look at is the Tate
module of an elliptic curve.

Definition 4.2.5. Let ¢ € Z be a prime, FE an elliptic curve, and E the inverse system
E = ({ E[("] nezoo  { (7] - B[] = E[l] bigjez.) -
Then the (¢-adic) Tate module of E is T;(F) = @(]E)
Much like how the f-adic integers carry information about Z/¢"Z, the Tate module

carries information about the torsion of an elliptic curve. We will see what this structure
looks like in Corollary 4.3.11.

Definition 4.2.6. Let L/K be a normal, separable extension. Then the set of automor-
phisms
Gal(L/K)={a€L—- L|a(z)=zforallz € K}

is a group under composition called the Galois group of L/ K.

FExample 4.2.7. We will determine the Galois group

G = Gal (Q(v2,V3,V5)/Q) .

Let f(z) € Q[z] be given and consider an element u € Q(v/2,/3,/5) that is a root of
f(z). If o € G, then o(u) is also a root of f(x). Thus, for each ¢ € {2,3,5}, we have
o

(\/)?) =Vlor —VI. Let £ €{2,3,5}. Then,
O'(O'(\/Z)) = o(£V0) = £o (V1) = £(£VI) = V7.
Hence the elements of GG are self-invertible. Furthermore, G has six elements, so
G727 x 7)]27 X 7.]27..
Ezample 4.2.8. We will show that the Galois group of F,/F,, is
Gal(F,/F,) = Z =limZ/mZ= ] 2,

¢ prime

where the inverse limit is taken over all m € Z-y and the morphisms in the inverse system
are the evaluation maps used in defining the /-adic integers. The ring Z is called the
profinite integers.
We first need to show that
Gal(F . /F),) =2 Z/kZ

for every k € Z~g. Let m be defined by 7(x) = 2P. This morphism is explored in greater
depth in Section 4.3. Specifically, in the discussion after Definition 4.3.2, we show that
7 is a field automorphism of F,. Furthermore, o = a for all a € F,r, so 7 is a field

automorphism of [F,» as well. Fermat’s Little Theorem tells us that 7 fixes all elements
of Fp, so m € Gal(F . /IFp).



28 CHRIS CALGER

Galois theory tells us that
| Gal(Fy /F))| = [Fpr : Fpl = k.

Let 4,7 € {0,1,...,k — 1 with ¢ # j be given. If * = 77, then 7' is the identity of
Gal(F,»/F,). Recall that

F,[X]

F(X) 7

where f(X) € F,[X] is an irreducible polynomial of degree k. Under this construction,
the polynomial ¢g(X) = X7 — X has exactly p* roots, since 7*~7 is the identity of
Gal(F,»/Fp). Then, g(X) must be the zero polynomial, so ¢ — j = 0. This shows that all
powers 0,1,...,k —1 of 7 are distinct, so Gal(IF« /IF,) is generated by 7 and therefore is
cyclic with order k. Note that if ¢ = p”, then

Gal(F,~/F,) C Gal(F,/F,) = Z/rZ
is a subgroup, so it is also cyclic and has order m.

Recall from Section 4.1 that B
Fq — U qu .

m€Z>0

>~

pk

Thus, we get that
Gal(F,/F,) 2 Z = imZ/mZ.
Lastly, we will not show this, but it is interesting to note that
z= 1] .
£ prime

The next theorem shows the utility of the Tate module. The proof is beyond the scope
of the thesis [8].

Theorem 4.2.9 (Tate [8]). If £y, Ey/F, are elliptic curves, then the natural map
Homy, (Ey, Ey) ® Zy — Homgy g v,y (Te(Er), To(E))
s an isomorphism.

Remark 4.2.10. The above theorem is also true if I, is replaced with a number field.
Over an arbitrary field, the map in the above theorem is injective.

Let Q; denote the f-adic numbers, which are the field of fractions of Z,. Define the
module V; by Vi(E) = Ty(E) ®z, Q. Then we get the corollary:

Corollary 4.2.11. If Ey, E,/F, are elliptic curves, then the natural map
1 an isomorphism.

This means Tate’s theorem tells us that Fy and Es, are isogeneous if and only if V;(E)

and V;(E,) are isomorphic as Gal(F,/F,)-modules. We can also use this to say more about

E; and E,. From Example 4.2.8, we have the fact that the Galois group Gal(F,/F,) is
(topologically) generated by mg, where g is the morphism defined by 7p(P) = P?.

Then, for a point P € E(F,), this means that P € E(F,) if and only if 7g(P) = P. In
particular, this discussion yields the following corollary:
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Corollary 4.2.12. Two elliptic curves Ey and Ey over IF, are isogeneous if and only if
#E1(Fy) = #E,(F,).

4.3. Frobenius Endomorphism. We now consider an elliptic curve E/F,. A natural
question to ask is how many elements are in the group E(F;). That is, how many
[F,-rational points are on the elliptic curve?

Ezample 4.3.1. Let E be the elliptic curve defined over F, given by
E:yf=2+u.

We will show that # E(F,) = 0 (mod 4) for every odd prime p. First notice that we always
have one point for free, namely the base point O € E(F,). There are also three trivial
solutions (0,0), (¢1,0), and (2, 0), where (;, (s € F, are the two solutions to (3 + ¢ = 0.
Lastly, we count the number of elements x € F, such that 2° +z is a square (not zero).
Of course, there must be an even number of these elements since for every such element,
the map x — —x produces another distinct element. Then there are twice as many points
(x,y) which solve y* = 2 + z, so the number of non-trivial points (i.e., not including O
and those with y = 0) is divisible by 4. This, together with the four trivial points, shows
that the total number of F,-rational points is divisible by 4, so #E(F,) = 0 (mod 4).

We now turn to a particular endomorphism of an elliptic curve over a finite field called
the Frobenius endomorphism. As we will see in this section and the next, there are many
advantages to studying this particular morphism.

Definition 4.3.2. The Frobenius endomorphism of an elliptic curve E/F, is the morphism
7y . ' — E given by

me(z,y) = (2% y7).

We will first verify that 7z is an endomorphism. If E (as a variety) has ideal I(E),
then denote E@ to be the curve with ideal generated by { f(@ | f € I(E)}. In other
words, if F is given by a Weierstrass equation

By +ayzy + asy = ° + ax® + agr + ag,
then E@ is given by raising each coefficient to the gth power:
E9D 92 4 alay + aly = 2 + ada® + ale + al .

Then 7 is a morphism 7z : E — E@.

Let ¢ : F, — [, denote the ¢th power map, that is p(x) = z?. By Fermat’s Little
Theorem, ¢ is the identity on F, when ¢ is prime. Clearly, ¢ is a homomorphism of
rings, so its kernel must be an ideal of F,, which can be either {0} or all of F,, since
F, is a field. Note that ¢(1) = 1, so 1 & kerp. Then it must be that kerp = {0}, so
© is an injective morphism between finite fields of the same size, so it is therefore an
isomorphism.

We then have E@ = E which means 7 is an endomorphism of E. The Frobenius
endomorphism also fixes the base point O, so 7g € End(F). Recall from Section 3.3 that
Tr(rg) = g + g, where 7g is its dual isogeny.

Definition 4.3.3. When E/F,, where char(F,) = p, we define a similar Frobenius map
7 : E — E® by 7(x,y) = (27,y?). Note that when p = ¢, then 7 = 7p.
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Recall that in order to define the degree of a morphism ¢ : ¢ — (5, in Definition
2.3.9, we introduced an induced map ¢* : K(Cy) — K(C1) given by ¢*(f) = f o ¢.

Definition 4.3.4. We say that a morphism of curves ¢ : C; — C is purely insepara-
ble if K(C}) is purely inseparable over ¢*K(Cy). We define separable and inseparable
morphisms in a similar way, by replacing “purely inseparable” in the definition.

Proposition 4.3.5. deg(w) = p and 7 is purely inseparable.

Proof. Let E/F, be an elliptic curve. We know that 7 : E — E®. Tt suffices to show
that mF,(E®) = F,(E)?, where F,(E)? = { f7 | f € F,(E) }.

Notice that F,(E) consists of quotients of homogeneous polynomials f,g € F,[E] of
the same degree, namely

flg=FXY,2)/9(X.Y,Z).
Then 7*F,(E®) consists of quotients
m(f/9) = F(XP,YP, Z7) [g(XP,Y?, ZP) .
Observe that F,[X,Y, Z]P = F,[X?,Y?, Z?], so we then have
X2 Y2, 20) [g(XP,YP, 27) = f(X,Y, Z2)P [g(X,Y, Z)P = (f/9)",

which shows 7F,(E®) = F,(E)?. Lastly, we have that F,(E)? is purely inseparable over
F,(E), which means 7 is purely inseparable.

We will not show that deg(mg) = p as the proof relies on a different characterization of
the degree of a morphism from the one we have been using. Specifically, we may define
the degree to be

deg(mg) = [Fy(E) : W*EFq(E(p))]a
which can be shown to be p. |
Specifically, this proposition tells us that deg(mg) = g and 7 is purely inseparable.

Proposition 4.3.6. Let ¢ : E — E' be an isogeny of elliptic curves E, E'/F,. Then
there exists a separable isogeny ps and an integer n > 0 such that

p=psom".

Definition 4.3.7. Let ¢ = ¢ o 7" be an isogeny of elliptic curves over F,. We define the
separable and inseparable degrees of ¢ to be

Vs

deg,(p) = deg(ps) and deg;(¢) = p",

respectively.

In particular, note that deg(y) = deg,(¢) deg; (). Also, ¢ is purely inseparable exactly
when deg,(¢) = 1.

Proposition 4.3.8. Let ¢ : £y — E5 be an isogeny. Then
# (07 (P)) = deg,(¢)
for every P € Es.

Notice that when we set P = O, Proposition 4.3.8 tells us that # ker(p) = deg,(p).
Applying this to [m] : E — E tells us that #E[m| = deg,([m]).
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Proposition 4.3.9. Let E be an elliptic curve and let F C E be a finite subgroup. Then
there exists a unique elliptic curve E' and a separable isogeny ¢ : E — E' with

ker(p) = F.
Proposition 4.3.10. Let E/F, be an elliptic curve and let m € 7Z be nonzero. If m
and p are coprime, then Elm] = Z/mZ x Z/mZ. Furthermore, either E[p| = Z/pZ or
Elp] ={0}.
Proof. First, suppose m € Z is a nonzero integer coprime to p. Then [m] is separable
and Proposition 4.3.9 tells us
#E[m] = deg[m] = m?.
Likewise for any divisor d € Z of m, we have
#E[d] = degld] = d*.

Thus, it must be that E[m] = Z/mZ x Z/mZ.

Now consider the multiplication-by-p map [p]. Since char(F,) = p, [p] is not separable.
Recall from Proposition 4.3.5 that 7 is purely inseparable and deg(m) = [p]. This means
deg,(m) =1 and [p] = T om. Then,

#E[p] = deg,[p] = deg, (7 o m) = deg,(7) deg, () = deg,(7) .

Notice that
1 7 is purely inseparable;

deg,(T) = {

So, this tells us that either #E[p] = 0 or #E[p] = p. A small modification of the above
proof shows that #E[p?] = deg,(7)® for every a € Z~o. Thus, when E[p| = p we have
Elp| = Z/pZ. n

The next corollary follows immediately.

Corollary 4.3.11. The Tate module of an elliptic curve E/K is a Zy-module. If { € Z
is a prime not equal to p, then Ty(E) = Zy x Zy. Otherwise, we have T,(E) = {0} or Z,.

p else.

Now that we are equipped with information about the Frobenius endomorphism, we
will use it to study the number of F -rational points on an elliptic curve over F,.

Proposition 4.3.12. Let E/F, be an elliptic curve and g the Frobenius endomorphism.
Then
#E(F,) =q+1—Tr(mg).

Proof. Using the properties of the degree map, we have the following:
#E(F,) = deg(l — mg) = deg(mg) — Tr(mg) + 1 =14 ¢ — Tr(mg) .

Ezxample 4.3.13. Let E/F5 be the elliptic curve
E:y?=2>+2.
We will see later in Example 4.4.8 that #E(F5) = 6. In this case, 7z is the map given
by mg(x,y) = (z°,9°). Since mp € End(F), we know that it is a root of its characteristic
polynomial
ery (&) = 2% — Te(mp)a + deg(rs) .
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But, we also know from the above proposition that Tr(rg) = 5+ 1 — #E(F5) = 0. So,
g omg = [—5]. The dual 7g is the unique map such that 7g o g = [5], so it must be
that /7'(\'E = —TE.

Theorem 4.3.14 (Hasse). Let E/F, be an elliptic curve. Then
[#EF,) —q—1] <24

Proof. Theorem 3.3.6 tells us that |Tr(¢)| < 24/deg(¢) for any ¢ € End(F). We have
just seen that m7p € End(E), deg(mg) = ¢, and Tr(mg) = ¢ + 1 — #E(F,), which proves
the result. |

The next result was also proved by Hasse and is a generalization of the previous
theorem.

Theorem 4.3.15 (Riemann Hypothesis for Elliptic Curves). Let E/F, be an elliptic
curve. Then for all integers m > 1, we have

HE(E ) — q" — 1] < 2/

4.4. Supersingular Curves. We have mentioned several times that one of the inter-
ests in exploring elliptic curves over finite fields is that the endomorphism ring may be
unusually large. Specifically, Theorem 3.3.11 tells us that End(E) may be an order in a
quaternion algebra. The main result of this section, Theorem 4.4.4, tells us exactly when
this occurs.

Recall Proposition 4.3.10 which says that when m and p are coprime, then E[m] =
Z/mZ x Z/mZ, and if we set m = p, then depending on E we have either Elp| = Z/pZ
or Blp] = {0},

Definition 4.4.1. An elliptic curve E/F, is supersingular if E[p] = {0}. If E is not
supersingular, then it is called ordinary.

Remark 4.4.2. There is no relation between singular curves and supersingular elliptic
curves, since all elliptic curves are non-singular. The term supersingular is historic, and
comes from describing the j-invariants of certain elliptic curves as “singular” when they
correspond to elliptic curves of unusual endomorphism rings [6].

Lemma 4.4.3. If 7 is separable, then the natural map End(E) — End (T,,(E)) is injec-
tive.

The next theorem gives many equivalences for supersingular curves.

Theorem 4.4.4. Let E/F, be an elliptic curve. The following are equivalent.
(1) E is supersingular, i.e., E[p] = {0}.
(2) 7 is purely inseparable.
(3) [p] is purely inseparable and j(E) € F.
(4) Endg (E) is an order in a quaternion algebra.
(5) Endg (E) is not commutative.
(6) Tr(mg) = 0 (mod p).

Proof. (1 <= 2) From Proposition 4.3.8 we know

#E[p] = #([p]1(0)) = deg,([p]),
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Remember that [p] = 7 o w by definition of the dual isogeny. We showed in Proposition
4.3.5 that 7 is purely inseparable, so deg,(7) = deg,([p]). This means

#E[p] = degy(7),

so 7 is purely inseparable if and only if #FE[p] = 1, which occurs exactly when FE is
supersingular.

(2 = 3) If 7 is purely inseparable, then since 7 is always purely inseparable, we
have [p] = 7 o 7 is purely inseparable. It remains to show that j(£) € F ..

7 factors as T = s o and deg (T) = 1 because 7 is purely inseparable. Then,

[p]=Fom=(Tsom)or=F,0n,
which means 7, : E®*) — E is an isomorphism. Theorem 2.3.19 tells us
. : 2 . 2
J(B) = j(B®)) = j(E)",
s0 j(E) € Fpe.

(3 = 4) Suppose, by way of contradiction, that End(F) is not an order in a
quaternion algebra. Then by Theorem 3.3.11, either End(E) = Z or is an order in an
imaginary quadratic number field. This means that either End(E) ® Q = Q or Q(v/d),
for some d < 0.

We now want to show that the isogeny class of F is finite. Let v : E — E’ be an isogeny
to some elliptic curve E’. By assumption, we have that [p| is purely inseparable on F
and j(E) € F,2. The proof of Corollary 4.4.7 shows that [p] is also purely inseparable
on E', which means #E'[p] = deg,[p|. The proof of (2 = 3) shows that we also have
J(E") € F,2, so there are only finitely-many possibilities for the isogenous elliptic curve
E'.

Let ¢ € Z be any prime ¢ # p such that ¢ is prime in End(E") for all elliptic curves E’
isogenous to K. We proved in Proposition 4.3.10 that

E[(| = Z/07 x L] 0Z..

Since E[¢] C E(F,), there exist subgroups Fy C Fy C -+ C E such that each F; = Z/{.
Denote E; = E/F;. By Proposition 4.3.9, there exists a unique isogeny ¢; : £ — E; with
ker(yp;) = Fj.

Since, as j(E;) € F,2, there are only finitely-many possibilities (up to isomorphism)
of isogeneous elliptic curves Fj;, there exists positive integers m,n € Z-q such that ¢ :
Epin — Ep, is an F-isomorphism. Since we have started with Fy C F, C --- C E, there
is a natural projection

w:E, — Enn

which gives an endomorphism A = ¢ o @ with ker(\) = F,,,,,,/F,,. Then ker()) is cyclic
with order ¢". Remember we chose ¢ to remain prime in End(E,,). Then, notice that
since

ker(\) = Fyin/Fr C B[]
is a subgroup, there exists an isogeny 7 such that

wor = [{""].

So there must exist u € Aut(E,,) such that A\ = u o [("/?]. However, ker([¢™/?]) is never
cyclic, which is a contradiction.
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(4 <= 5) This equivalence is immediate from the characterization of End(£) in The-
orem 3.3.11. Either End(F) is commutative, in which case End(E) ® Q = Q or Q(+/d),
or End(F) is not commutative, in which case End(F) ® Q is a quaternion algebra.

(5 = 2) We prove this direction contrapositively. If 7 is not purely inseparable then
Elp| #{0}. Corollary 4.3.11 tells us that either 7,(E) = {0} or Z,. Notice that

Elp] = T,(E)/pT,(E),

so we must have T}, = Z,. By Lemma 4.4.3, End(E) injects into End(7},) = End(Z,).
We know End(Z/mZ) = Z/mZ, and taking the inverse limit gives End(Z,) = Z,. Thus,
End(FE) injects into Z,, which is commutative, so End(E) is commutative.

(2 < 6) We already know 7 is always purely inseparable. If 7 is purely inseparable,
then setting p = ¢" gives (7)" = 7. This shows that 7g is purely inseparable. Then,
[Tr(mg)] is inseparable, which means Tr(7g) = 0(modp). A similar line of reasoning
shows that the converse of this is true. |

Equivalence 6 can be strengthened when 7g is the pth power map, that is when E is
defined over [F),.

Corollary 4.4.5. If p > 3. E/F, is supersingular if and only if E(F,) =p+ 1.
Proof. 1f p > 3, then Theorem 4.3.14 says
| Tr(mp)| < 2¢/p,

so, | Tr(7g)| = 0 because p > 2,/q when p > 3. To finish the proof, recall that Proposition
4.3.12 says

#E(F,) =p+1—Tr(rg) =p+1.

Remark 4.4.6. Corollary 4.4.5 fails if p < 3. For example, it can be seen that
E:y*+y=24+2r and FE ¢y +y=2"+2
are both elliptic curves over [y, but the #E(Fy) = 3 # 5 = #E(Fs).
Using equivalence 3, we obtain another corollary:

Corollary 4.4.7. If By, Ey/F, are supersingular, then they are isogenous. That is, the
supersingular curves form a single isogeny class.

Proof. Let ¢ : E; — E, be an isogeny and suppose E; is supersingular. Let [p]; €
End(FE)) and [p]s € End(F3) be the multiplication-by-p maps. Then, [p]; o ¢ = ¢ o [p]s,
SO

deg, ([p]1) deg, () = deg, () deg,([p]2)

It follows that deg,([p]1) = deg,([p]2). Then since E; is supersingular, E[p] = {0}, so
deg,([p]1) = 1 = deg,([p]2). Thus, Es is supersingular as well. [ |

In the next two examples, we will use Corollary 4.4.5 to show that specific classes of
elliptic curves are supersingular.
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Ezxample 4.4.8. Let p = 2 (mod 3) be a prime, let B € [}, and let E' be the elliptic curve
E:y=2>+B.
We will show that #FE(F,) = p+1. As always, we start by noting O € E(F,). Note that

#(Fy) =p—1, and since p = 2 (mod 3), we have that #(FF)) is coprime to 3.
Under the birational map (x,y) — (z,y + 1/2), E is equivalent to

F:y+y=2>+DB.

This means that for each y € F,, there exists a unique = € F, such that y* +y = 2° + B.
This gives us p points in E(IF,) in addition to the base point O, so we can conclude that
#EGFP) =p+1

FEzample 4.4.9. Let p = 3 (mod 4) be a prime and let E be the elliptic curve
E:y=2—2z.

We will show that #E(F,) = p+ 1. Again, we clearly have O € E(F,). There are also
three trivial solutions, which are (0,0), (1,0), and (—1,0).

Next we count the number of non-zero squares in F, equal to 2® — x, for some .
Consider an element z € F, such that  # 0,1,p — 1. Note that either 2 — x or (not
inclusive) (—z)® — (—x) is a square in F,. Then there are are (p — 3)/2 non-zero squares
equal to 22 — .

This gives us 2(p — 3)/2 = p — 3 non-trivial solutions to y* = z* — z. Adding the four
trivial solutions we counted in the beginning yields #E(F,) = p + 1.

The next theorem gives us information about how many supersingular curves there
are, up to isomorphism, modulo p, for each prime p.

Theorem 4.4.10 (Deuring, Eichler). The following sum is taken over supersingular
curves up to isomorphism.

pel_oy L
24 & #Au(E)
supersingular

The above theorem gives us a few notable corollaries. First, since

#Aut(E) = {

24 p=2;

12 p=3,

we have that there is exactly one supersingular curve over F, and one supersingular curve

over [F3 (up to isomorphism). Specifically, these curves are given by the equations
Yy =a’

and
3

y2 =T —,
respectively. Note that this does not mean that there is one supersingular curve over [y
and over [F3. For example, over [F5 there are three supersingular curves up to isomorphism,

namely the curves given by

Y+ry=r+r+1, Y+y=2"+1, and ¢y’ +y=2"+u1.
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4.5. Elliptic Curve Reduction. We conclude this thesis by showing an application of
elliptic curves over finite fields to the theory of elliptic curves over Q.

Theorem 4.5.1 (Mordell, 1923). E(Q) is a finitely generated group.
We also know that F(Q) is abelian, so Theorem 4.5.1 specifically implies that

E(Q) = E(@)tors EB ZT )

for some non-negative integer r € Z,>( called the rank of E. In general, this type of
decomposition into the torsion subgroup and finitely-many copies of Z is a property of
finitely generated abelian groups.

Definition 4.5.2. If F is given by a Weierstrass equation with smallest possible discrimi-
nant, then we say E has a minimal model.

Suppose we have an elliptic curve £/Q given by a minimal model
E:y*=2"+Az+ B,
for some A, B € Q, and we want to ask if
E:y =2+ Az + B

is an elliptic curve over F,, where A" = A(modp) and B’ = B (modp). The only
condition we need to verify is if the discriminant of this new (possibly singular) curve is
non-zero. That is,

Az = —16(4A” + 27B") # 0 (mod p) .
if and only if E /F, is an elliptic curve. Of course, this is entirely dependent on our choice

of prime p.

Definition 4.5.3. 1f p is a prime such that E/IFP is an elliptic curve, we say p is a prime
of good reduction. If E/F, is not an elliptic curve, we say p is a prime of bad reduction.

Example 4.5.4. Let E be the elliptic curve
E:y?=2°—4dx+4.

If we reduce FE over F3, we get

Ey: vy =a3+20+1,
which has discriminant
Ap = —16(4(2)° +27(1)%) = =944 = 1 (mod 3) .

This means 3 is a prime of good reduction.
If we reduce E over Fy, we get

E23y2:$3>

which has discriminant Az = 0, so 2 is a prime of bad reduction. A quick calculation
shows that there is also bad reduction at 11.

Proposition 4.5.5. An elliptic curve over Q has bad reduction at prime p if and only if
p divides the discriminant of the elliptic curve.
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An immediate corollary is that an elliptic curve has only finitely many primes of bad
reduction. _

Note that when we introduced E we required that E be given by a minimal Weierstrass
model. The next example shows what would have happened if we did not have this
condition.

Ezample 4.5.6. Let E/Q be the elliptic curve given by
E:y*=a"+5°,

which has discriminant A = —2%. 33 . 512, If we reduced E over Fs, then we would get
the curve

E: Y =2®,
which is singular. So it appears as though F has bad reduction at 5. However, since A
contains 5'? as a factor, we can use a change of variables

(z,y) = (5%2,5%)
to see that E is also given by the model
E:y*=2%+1

in which 5 is no longer a bad prime. So, the original bad-prime could be “removed”
by switching to a different model. Specifically, we removed the factor 52 from the
discriminant. These removable bad-primes do not appear when we remove all factors p'?
from the discriminant, which is exactly what it means for £ to be given by a minimal
model.

Proposition 4.5.7. Whenever p is not a prime of bad reduction, there is an injection
E(@)tors — E(Fp) :

FExample 4.5.8. Let n € Z~( and consider the elliptic curve

E,:y* =2 —n’z.

We will try to determine the structure of E,(Q)ios. Of course, we always have O €
E,(Q)tors- First, notice that by looking at the equation defining FE,,, we get three more
points in E,(Q) for free, namely (0,0), (n,0), and (—n,0). Furthermore, each of these
points has order 2 in E,(Q), so they are all in E,,(Q)tos-

Recall Example 4.4.9, which tells us that whenever p = 3 (mod 4) is a prime, we have
#E,(F,) = p+1. Whenever p is a prime of good reduction, E, (Q)ios injects into £, (F,).
This means that #E,,(Q)iors divides p+ 1 for all but finitely-many primes p = 3 (mod 4).

A result from elementary number theory is that if £ > 4 is an integer, then there exists
infinitely many primes p = 3 (mod 4) such that p + 1 is not divisible by k.

With this fact, we see that #E,(Q)rs cannot be larger than 4 or else we would
contradict our original deductions. Thus, E,(Q)s consists only of the four points we
found earlier, which shows

En(@)tors = { Ov (Oa O)a (n’ 0)7 (_nv O) } .

__Given an elliptic curve over QQ, we may want to ask for which primes p is the reduction
E over [F), supersingular.
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Example 4.5.9. Consider the elliptic curve
E:y=2*+z.
Notice that E has only one prime of bad reduction, namely 2. Whenever p # 2 is a

prime, it is equivalent to either 1 or 3 modulo 4. Recall that in Example 4.3.1 we showed
#E(F,) = 0(mod4). Then E is supersingular over I, exactly when p = 3 (mod 4).
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CONCLUSION

In this thesis, we examined the theory of elliptic curves over finite fields. We explored
what it means for elliptic curves to be isogeneous and developed the theory of isogenies
which included dual isogenies, the endomorphism ring, the Frobenius endomorphism, and
separable/purely inseparable isogenies. Over finite fields, we used the Tate module to
show that elliptic curves are isogeneous over [, exactly when they have the same number
of F,-rational points.

We saw what the possible structure of the endomorphism ring is over arbitrary fields
and gave a more detailed description of the ring when the field is finite. In particular,
we classified elliptic curves over finite fields as either supersingular or ordinary and saw
many equivalences for determining this characterization.

Lastly, as we have just seen in the previous section, we explored an application of finite
fields. Specifically, we used our knowledge of finding the number of F,-rational points on
an elliptic curve to help us understand elliptic curves over Q.

I will close this thesis by stating there is much more to learn about elliptic curves
over finite fields. An important and interesting topic that was not covered is the Weil
conjectures, which involve zeta functions associated to elliptic curves. A good reference
for this is Chapter V.2 of [5].
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