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1. Introduction

The goal of this thesis is to give an expository report on elliptic curves over nite elds.
An elliptic curve is dened as a smooth curve of genus 1 having a known point, denoted
O. It can also be dened as a smooth curve given by a Weierstrass equation.

We begin by giving an overview of the necessary background in algebraic geometry to
understand the denition of an elliptic curve such as varieties, Weierstrass equations, and
genus in Sections 2.1 and 2.2. We then explore the general theory of elliptic curves over
arbitrary elds, such as the group structure in Section 3.1, isogenies in Section 3.2, and the
endomorphism ring in Section 3.3. In Section 4, we study elliptic curves over nite elds.
We focus on the number of Fq-rational solutions, Tate modules, supersingular curves,
and applications to elliptic curves over Q. In particular, we approach the topic largely
through the use of the Frobenius endomorphism. While Sections 2 and 3 are written so
that the material is applicable to arbitrary elds, much of the presented information was
chosen because of its utility to the theory of elliptic curves over nite elds.

The primary reference for Section 2 is Chapters I, II, and III of [5]. Chapter III of [5]
is also the main reference for Sections 3.1 and 3.2. The primary reference for Sections
3.3, 4.2, and 4.3 is Chapters 12 and 13 of [2]. Chapter V of [5] is the main reference
for Section 4.4. Lastly, the references used for Section 4.5 are Chapter VII of [5] and
Chapter 16 of [3].
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2. General Theory of Elliptic Curves

We will rst state the denition of an elliptic curve. Although we have not yet dened
some of the terms, this will allow the reader to make note of the important terms as they
appear.

Denition 2.0.1. An elliptic curve (E,O) is a smooth curve E of genus 1 having a known
point O.

The aim for Section 2.1 is to establish what a curve is. The genus of a curve will be
thoroughly explained in Section 2.3.

2.1. Projective Varieties. We will start by introducing projective space. This will serve
as the foundation for elliptic curves and the majority of the objects in this thesis.

Unless otherwise specied, K will denote a perfect eld, which means that every nite
extension of K is separable. Examples of perfect elds include elds of characteristic
zero, algebraically closed elds, and nite elds.

Denition 2.1.1. The projective n-space Pn over a eld K, is the set of equivalence classes
of (n+1)-tuples (x0, x1,    , xn), where each entry x0,    , xn is an element of the algebraic
closure K of K, under the following equivalence relation ∼:

(x0,    , xn) ∼ (y0,    , yn) if there exists λ ∈ K
×
such that

xi = λyi for all i ∈  0,    , n  
The equivalence class of a tuple (x0,    , xn) is denoted [x0,    , xn].

Note that Pn is dependent on the eld K. If there is any ambiguity about the eld we
may write Pn(K). Also note that the elements (equivalences classes) of projective space
over K have entries in K. We write Pn(K) if we want to specify only the K-rational
points in Pn, i.e., the set of equivalences classes where each tuple has entries in K.

Example 2.1.2. We can think of Pn as describing the set of all lines in (n + 1)-space
passing through the origin. The elements of the real projective line P1(R), thought of as
lines, can then be determined by their slope, which is a unique real number for all lines
except for the vertical line [0, 1] ∈ P1(R) having corresponding slope ∞.

Figure 1. The real projective line P1(R).
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From this, we see that the real projective line is homeomorphic to the circle S1 and
to R  ∞, where [1, y] ∈ P1(R) corresponds to y ∈ R  ∞ and [0, 1] ∈ P1(R)
corresponds to ∞ ∈ R  ∞.

In order to dene varieties, we must consider homogenous polynomials inK[X0,    , Xn].
For ease of notation, we will write K[X ] to mean K[X0,    , Xn]. By a (degree-d) ho-

mogenous polynomial, for d ∈ Z>0, we mean a polynomial f ∈ [X ] with the property
that for each λ ∈ K,

f(λX0,    ,λXn) = λdf(X0,    , Xn) 

Denition 2.1.3. A projective variety V is a set of the form

P ∈ Pn(K)  f1(P ) = 0,    , fm(P ) = 0  ,
for some homogenous polynomials f1,    , fm ∈ K[X ] satisfying the property that I(V ) =
⟨f0,    , fm⟩ ⊂ K[X ] is a prime ideal.

In this thesis we only consider projective varieties, and will as such refer to them only
as varieties. Note that projective space Pn is itself a variety.

We will write VK to mean a variety whose ideal can be expressed as I(V ) = ⟨f1,    , fm⟩
where f1,    , fm ∈ K[X ]. We will say that such varieties are dened over K. In general,
if we let I(VK) = I(V ) K[X ], then V is dened over K when I(VK) = I(V ).

Example 2.1.4. Consider the ideal in K[X, Y, Z] generated by Y 2Z −X3. We write

V : Y 2Z = X3

to mean the variety V with ideal I(V ) = ⟨Y 2Z −X3⟩. Notice that I(V ) is generated by
a homogeneous polynomial, so it is homogeneous. We can also check that I(V ) is prime
to see that V is in fact a variety.

Denition 2.1.5. The coordinate ring of a variety VK is

K[V ] =
K[X ]

I(VK)


The quotient eld of K[V ] is denoted K(V ).

Denition 2.1.6. The dimension dim V of a variety V is the transcendence degree of
K(V ) over K.

As we will see from the next denition, in this thesis we only care about varieties of
dimension one. In fact, if V is variety with I(V ) = ⟨f⟩, where f ∈ K[X0, X1, X2] is an
irreducible (homogeneous) polynomial, then dim V = 1.

Denition 2.1.7. A curve is a projective variety of dimension one.

Denition 2.1.8. A curve C with I(C) = ⟨f1,    , fm⟩ is smooth if every point is non-
singular. That is, if for all P ∈ C, the rank of the m× n matrix


∂fi∂Xj(P )


1≤i≤m,1≤j≤n

is n− 1.
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Specically, if I(C) = ⟨f⟩, then C is smooth when
 ∂f

∂X1

(P )   
∂f

∂Xn

(P )


has rank n − 1. Note that we will see a much nicer characterization of smoothness in
Section 2.2.

Turning our attention to elliptic curves, the condition that there is a known point O
can now restated as saying there is a xed K-rational base point O ∈ E(K). With these
denitions, we now understand most of the denition of an elliptic curve, except for the
property that it is a genus 1 curve.

2.2. Weierstrass Equations. So far we have seen the denition of an elliptic curve
and some information about curves. Before dening the genus of a curve, we aim to
put elliptic curves into context by describing what they look like: namely, curves
given by Weierstrass equations. In fact, while the formal denition of an elliptic curve
is important, we will often nd it more practical to consider the (equivalent) denition
in this section. Further, we will see in Section 2.3.5 that every elliptic curve can be
expressed as a Weierstrass equation– and conversely, that every smooth curve given by
a Weierstrass equation is an elliptic curve.

The labeling of the coecients in the next denition may seem strange, but will be
explained in Example 2.3.23. It is also not something to focus on as we will shortly
change the coecients to a dierent form.

Denition 2.2.1. A Weierstrass equation is an equation of the form

(1) Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3 ,

where a1,    , a6 ∈ K.

We have mentioned that an elliptic curve has a specied base point O. When an
elliptic curve (E,O) is given by a Weierstrass equation of the form (1), then the base
point is O = [0, 1, 0]. We can also make (1) easier to work with through the following
process.

Denition 2.2.2. If f(X0,    , Xn) ∈ K[X ] is a polynomial written in homogeneous co-
ordinates, then we can dehomogenize f with respect to Xi by setting Xi = 1, for some
i ∈  0,    , n  to get f ′(X0,    , Xi−1, Xi+1,    , Xn). Afterwards, we say that f ′ is writ-
ten in dehomogeneous coordinates.

Conversely, if we start with dehomogeneous f ′(X0,    , Xi−1, Xi+1,    , Xn), we can
homogenize f ′ by setting

f(X0,    , Xn) = Xd
i f

′
X0

Xi

,    ,
Xi−1

Xi

,
Xi+1

Xi

,    ,
Xn

Xi


,

where d ∈ Z is the least integer so that f is a polynomial.

By dehomogenizing (1), we get the equation

(2) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

where y represents YZ and x represents XZ. Note that homogenizing (2) gives

Zd

Y
Z

2

+ a1

X
Z

Y
Z


+ a3

Y
Z


−

X
Z

3

+ a2

X
Z

2

+ a4

X
Z


+ a6


,
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=Y 2Zd−2 + a1XY Zd−2 + a3Y Zd−1 −

X3Zd−3 + a2X

2Zd−2 + a4XZd−1 + a6Z
d




Then the least d ∈ Z making this a polynomial is d = 3, which is exactly (1).

Figure 2. The elliptic curve E : y2 = x3 − x with base point O included at innity.

Of course, when we dehomogenize we are losing some information about the curve.
In the case of an elliptic curve, when we dehomogenize (1) to get (2), we only lose
the base point O = [0, 1, 0]. Specically, this means that every point on a curve given
by a Weierstrass equation corresponds to a point on the dehomogenized curve except
for O, which is sent out to innity. So, when working with a Weierstrass equation in
dehomogenized coordinates, we must remember that the base point is also on the curve
out at innity.

So far, we have been working over an arbitrary eld K. Now, suppose K has charac-
teristic char(K) ̸= 2. This allows us to simplify the Weierstrass equation by completing
the square. If we set

y → 1

2
(y − a1x− a3) ,

then

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

simplies to

E : y2 = 4x3 + (a21 + 4a2)x
2 + (2a4 + a1a3)x+ (a23 + 4a6) 

Furthermore, if char(K) ̸= 2, 3, then we can simplify even further to get an elliptic curve
given by an equation of the form

E : y2 = x3 + Ax+ B ,

where A,B ∈ K. We call this a short Weierstrass equation and we will rewrite our
elliptic curves into this form unless char(K) = 2 or 3.

In the previous section, we dened the property of a curve being smooth. You may
wonder why we dene this next denition in this way, but this will become apparent in
the proof of Proposition 2.2.4.
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Denition 2.2.3. When E is an elliptic curve given by a short Weierstrass equation, we
dene the discriminant to be

∆ = −16(4A3 + 27B2) 

Proposition 2.2.4. Let E be a curve given by a Weierstrass equation. Then E is smooth
if and only if ∆ ̸= 0.

Proof. Suppose EK is smooth. We will prove this for when char(K) ̸= 2, as the proof
in the general case is longer and no more interesting. When char(K) ̸= 2, then E may
be given by a Weierstrass equation of the form

E : y2 = 4x3 + Ax2 + 2Bx+ C 

Recall that E is singular if the rank of the m× n matrix

∂fi∂Xj(P )


1≤i≤m,1≤j≤n

is n− 1. So, E is singular exactly at the points (a, 0), when a is a multiplicity-two zero
of

f(x) = 4x3 + Ax2 + 2Bx+ C 

The polynomial f has such a zero if and only if its discriminant is zero– that is when

144ABC − 4A3C + 4A2B2 − 128B3 − 108C2 = 0 

A computation reveals that the discriminant of f is equal to 16∆, which nishes the
proof. ■

This proposition will be very useful in later sections such as Section 4.5 as it gives us a
fast way to check if a curve given by a Weierstrass equation is non-singular and therefore
an elliptic curve.

2.3. Genus of Curves. So far, we have seen in Section 2.1 the denition of elliptic curves
as well as a brief introduction to the general theory of curves. The goal of this section is
to provide more concepts from algebraic geometry to complete our understanding of the
denition of an elliptic curve. Then, we will connect to the information in Section 2.2
by showing how the genus property of an elliptic curve guarantees it can be written in
Weierstrass form.

Many of the theorems in this section will not be proven as they are results from
algebraic geometry and, while necessary for dening elliptic curves, are not the focus of
this thesis.

2.3.1. Morphisms of Curves. We turn our attention to maps between curves. Consider a
function f ∈ K(C) in the function eld of a curve C. For a point P ∈ C, if we can write
f in the form f = gh for some g, h ∈ K[C] with h(P ) ̸= 0, then we say f is dened at
P . More succinctly put, we say that f is dened at P when f is in the local ring at P ,
which is the ring

K[C]P =  f ∈ K(C)  f = gh for some g, h ∈ K[C] with h(P ) ̸= 0  
The ring K[C]P is a discrete valuation ring, so it is a principal ideal domain with

exactly one maximal ideal MP = ⟨t⟩ generated by a (not necessarily unique) element
t ∈ MP . We call t a uniformizer for C at P .
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Denition 2.3.1. We dene the order of vanishing of f at P ,

ordP : K(C) → Z≥0  ∞ ,
by ordP (fg) = ordP (f)− ordP (g), where

ordP (f) = infm ∈ Z  t−mf ∈ K[C]P for a uniformizer t 
for all f ∈ K[C]P .

Note that by denition, the order of a uniformizer t for P is ordP (t) = 1. We say that
f is dened at P when ordP (f) ≥ 0. More specically, we say f has a zero at P when
ordP (f) > 0. Otherwise, if ordP (f) < 0, we say that f has a pole at P .

The following two theorems will be of use in Section 2.3.5.

Proposition 2.3.2. If C is a smooth curve and f ∈ K(C), then ordP (C) = 0 for all but
nitely many points P ∈ C.

Proposition 2.3.3. If C is a smooth curve and f ∈ K(C) has no poles, then f ∈ K.

Denition 2.3.4. For two curves C1, C2 ⊂ Pn, a map φ : C1 → C2 is called a rational map
if there exist f0,    , fn ∈ K(C1) such that φ is given by

φ(P ) = [f0(P ),    , fn(P )]

whenever f0(P ),    , f1(P ) are all dened.

Denition 2.3.5. A rational map φ : C1 → C2 is called a birational map if there exists
an inverse φ−1 : C2 → C1, that is also a rational map, satisfying φ−1 ◦ φ = φ ◦ φ−1 = I.

Note that these rational maps may not be dened on all of C1. However, it is most
useful to us to only work with rational maps that are dened on all of C1. We will refer to
these types of rational maps as morphisms. A näıve approach to properly dening these
morphisms would be to simply require that each f0,    , fn in Denition 2.3.4 be dened
on all of C1. The problem with this approach is that by choosing the f0,    , fn, we may
have described φ in such a way that the map appears to not be dened everywhere, even
though it actually is.

As an analogy to this concept, suppose we were to dene the constant-1 function on
R by

one : R → R , one(x) =
x

x


Written in this form, it may appear that one is not dened at 0, since 00 is undened,
but if we rewrite one in the form one(x) = 1, then we see that it is indeed dened on
all of R.

So how do we rewrite rational maps as we did with our function in R? Let φ : C1 →
C2 be a rational map given by φ = [f0,    , fn] and consider a point P ∈ C1. If there
exist homogeneous polynomials g0,    , gn ∈ K[X0,    , Xn] all of the same degree such
that g0(P ),    , gn(P ) are not all zero and

figj ≡ fjgi (mod I(C1)) for every i, j ∈  0,    , n  ,
then we say φ is dened at P and we may write

φ(P ) = [g0(P ),    , gn(P )] 
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Denition 2.3.6. A rational map φ : C1 → C2 between curves is a morphism if it is
dened everywhere on C1. Such a morphism is called an isomorphism if there exists an
inverse φ−1 : C2 → C1 such that φ ◦ φ−1 = φ−1 ◦ φ = I.

Example 2.3.7. The map φ : P2 → P2 given by

φ = [X2, XY, Z2]

is a rational map, but not a morphism. Note that X2, XY , and Z2 have no common
factors. However the point [0 : 1 : 0] is a zero of all three functions and since I(P2) = (0),
there is no way to modify the aforementioned functions modulo I(P2).

Let V be the variety

V : Y 2Z = X3 + Z3 

Then φ : V → P2 given by

φ = [X2, XY, Z2]

does dene a morphism of curves. To see this, we need to show that φ is dened every-
where on V . Notice that X2, XY , and Z2 all have the same degree. We only need to
check if φ is dened at [0, 1, 0] since the only solution to

X2 = XY = Z2 = 0

other than X = Y = Z = 0 is when X = Z = 0 and Y ̸= 0. Notice that

X3

2 ≡

Z(Y 2 − Z2)

2
(mod I(V )) 

Then,

φ = [X2, XY, Z2]

= [X2(Y 2 − Z2)2, XY (Y 2 − Z2)2, Z2(Y 2 − Z2)2]

= [X2(Y 2 − Z2)2, XY (Y 2 − Z2)2, X6]

= [X(Y 2 − Z2)2, Y (Y 2 − Z2)2, X5] 

So, φ([0, 1, 0]) = [0, 1, 0], which shows that φ is dened at [0, 1, 0].
To reiterate our analogy with one : R → R, we started with φ([0, 1, 0]) = [0, 0, 0],

which is undened in P2 just as 00 is in R. Then we rewrote φ so that it was not
undened at [0, 1, 0] just as we rewrote one.

An important result from algebraic geometry is the following theorem.

Theorem 2.3.8. A morphism between curves is either constant or surjective.

A morphism φ : C1 → C2 also induces a map φ∗ : K(C2) → K(C1), called the follow
by f map, given by φ∗(f) = f ◦ φ. Using this, we can dene the degree of a morphism.

Denition 2.3.9. The degree of a morphism of curves φ : C1 → C2 is

degφ =


P∈φ−1(Q)

ordP (φ
∗tφ(p))

where Q ∈ C2 is any xed point of C2 and tφ(P ) is a uniformizer at φ(P ) = Q.

We call the summand ordP (φ
∗tφ(p)) the ramication index of φ at P . We may denote

this by eφ(P ). If eφ(P ) = 1, we say φ is unramied at P .
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Example 2.3.10. Let φ : P1 → P1 be given by

φ([X, Y ]) = [X3(X − Y )2, Y 5] 

Of course, P1 is a smooth curve and φ is non-constant, so we may use the above propo-
sition to nd the degree of φ. We can think of P1 as the points [x, 1] ∈ P1, which are
determined solely by the coordinate x, together with [1, 0]. We call the collection of these
x the ane line A1, so that P1 ∼= A1  ∞.

Notice that the only point sent to [1, 0] under φ is [1, 0]. Then φ sends every point of P1

other than [1, 0], i.e., points on A1, to other points on A1. We can model the restriction
of φ to A1 by setting Y = 1 and dropping the second coordinate. Denote this restriction
by ψ = φ


A1 so that ψ : A1 → A1 is given by

ψ(x) = x3(x− 1)2 

The zeros of ψ are 0 and 1 and it is easy to see that ord0(ψ) = 3 and ord1(ψ) = 2. The
points 0, 1 ∈ A1 correspond to [0, 1], [1, 1] ∈ P1, respectively, and are the only points in
the preimage of [0, 1] ∈ P1. Applying the proposition we get

degφ = eφ([0, 1]) + eφ([1, 1]) = 3 + 2 = 5 

The following is a useful result about the degree of a morphism of curves.

Proposition 2.3.11. If φ : C1 → C2 is a degree 1 map between smooth curves, then φ
is an isomorphism.

2.3.2. Divisors.

Denition 2.3.12. A divisor D on a curve C is a formal sum

D =


P∈C
nP (P )

of points on C, where each nP ∈ Z and nP = 0 for all but nitely many terms. The
degree of such a divisor is

deg(D) =


P∈C
nP 

Note that the degree deg(D) of a divisor is nite because nP = 0 for all but nitely
many terms. The divisors of C form a group denoted Div(C). The degree-0 divisors form
a subgroup which is denoted Div0(C).

Example 2.3.13. Let P,Q ∈ C. Then 3(P ) + 2(Q) is a divisor on C. Another divisor
is (P ). We write the divisor in parentheses to distinguish between meaning the point P
and the divisor (P ).

Denition 2.3.14. A divisor is principal if it is of the form


P∈C
ordP (f)(P )

for some f ∈ K(C)×. We denote such a divisor by div(f). We say that two divisors
D1, D2 are linearly equivalent if D1 − D2 is a principal divisor. When this occurs, we
write D1 ∼ D2.
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Remark 2.3.15. Note that a divisor of f is an important device that keeps track of all of
its zeros and poles. We will see in Theorem 2.3.30 that divisors can be used to construct
functions with specic poles and zeros.

Denition 2.3.16. We say a divisor D =


P∈C nP (P ) is positive if nP ≥ 0 for each
P ∈ C. When this occurs, we write D ≥ 0.

Proposition 2.3.17. Let C be a smooth curve and f ∈ K(C)×. Then deg(div(f)) = 0.

Also, div(f) = 0 if and only if f ∈ K
×
.

The principal divisors form a normal subgroup of Div(C) and we denote the quotient of
Div(C) by the principal divisors by Pic(C). Likewise, we dene Pic0(C) in the same way,
replacing Div(C) with Div0(C). We call Pic(C) the Picard group of C. The importance
of the Picard group will be seen once we introduce dierentials.

Now that we have dened isomorphisms of (elliptic) curves, we turn our attention
briey to an elliptic curve E given by a Weierstrass equation

E : y2 = x3 + Ax+ B 

Denition 2.3.18. The j-invariant of an elliptic curve E given in short Weierstrass form
is the value

j(E) =
1728(4A)3

∆


The j-invariant is called such because it is invariant under isomorphism of curves. In
fact, we also have the following stronger statement.

Proposition 2.3.19. Let E and E ′ be elliptic curves. Then E and E ′ are isomorphic if
and only if j(E) = j(E ′).

We omit the proof of the next proposition.

Proposition 2.3.20. Any two Weierstrass equations for E are related by a change of
variables of the form

(x, y) → (u2x+ r, u3y + su2x+ t) ,

where r, s, t ∈ K and u ∈ K×.

When E is given by a short Weierstrass equation, any such map has r = s = t = 0.
We can see this by expanding the Weierstrass equation

y2 = x3 + Ax+ B 

The left hand side becomes

u3y + su2x+ t

2
= u6y2 + s2u4x2 + t2 + 2su5yx+ 2tu3y + 2tsu2x ,

and the right hand side becomes

u2x+ r

3
+ A


u2x+ r


+ B = u6x3 + 3u4x2r + 3u2xr2 + r3 + Au2x+ Ar + B 

Putting them together we get

u6y2 + s2u4x2 + t2 + 2su5yx+ 2tu3y + 2tsu2x

= u6x3 + 3u4x2r + 3u2xr2 + r3 + Au2x+ Ar + B ,
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which simplies to

u6y2 + 2su5yx+ 2tu3y

= u6x3 + (3u4r − s2u4)x2 + (3u2r2 + Au2 − 2tsu2)x+ (r3 + Ar + B − t2) 

This new equation is in short Weierstrass form when u ̸= 0, 2su5 = 0, 2tu3 = 0, and
3u4r − s2u4 = 0. So, we must have r = s = t = 0. Consequently, any two short
Weierstrass equations are related by a change of variables of the form

(x, y) → (u2x, u3y) ,

which is dependent solely on u ∈ K×.

2.3.3. Dierentials.

Denition 2.3.21. The space of dierential forms of a curve C is the set ΩC generated
by symbols of the form dx where x ∈ K(C). For all z ∈ K and all x, y ∈ K(C), we have
the following relations:

(1) dz = 0.
(2) d(x+ y) = dx+ dy.
(3) d(xy) = x dy + y dx.

ΩC is a K-vector space of dimension one.

Some intuition for these relations, specically 2 and 3, is that they resemble the sum
and product rules, respectively, for derivatives of functions from R to R.

Denition 2.3.22. For a divisor D ∈ Div(C), we dene the vector space associated to D
to be

L(D) =  f ∈ K(C)×  D + div(f) ≥ 0    0 ,
which is a K-vector space of nite dimension. Notice that if we take some non-zero
f ∈ L(D), then

0 = − deg div(f) ≤ − deg(−D) = deg(D) 

This means that if deg(D) < 0, then L(D) =  0 .
Example 2.3.23. Consider the spaces L


n(O)


for n = 0, 1,    . When n = 0, this space

has dimension 1. For all other n, this space has dimension n. We will see what a basis
for this space looks like for each n = 0, 1,    , 6.

When n = 0, dim

L

n(O)


= 0, so the vector space contains just the constant

functions and has basis  1 . When n = 1, the dimension does not change, so we do not
get any new functions in the basis.

When n = 2, the dimension is 2, so we get a new function, which we will denote x,
that has a pole of order 2. Likewise, when n = 3, we get a new function, denoted y, with
a pole of order 3. So far we have the basis  1, x  when n = 2 and  1, x, y  when n = 3.

When n = 4, it may appear as though we should get a new function with a pole of
order 4, but we do not, since x2 has a pole of order 4, so we have  1, x, y, x2 . Likewise,
for n = 5, we have xy, which has a pole of order 5, so we have  1, x, y, x2, xy . For
n = 6, we have y2, which has a pole of order 6, but we also have x3. Thus, for n = 6 we
have seven functions:  1, x, y, x2, xy, y2, x3 . We are stopping at n = 6 for reasons that
will become clear in Theorem 2.3.31.
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Proposition 2.3.24. Let ω ∈ ΩC be a non-zero dierential and let t be a uniformizer
for a point P ∈ C. Then there exists a unique function g ∈ K(C) such that ω = gdt. We
denote g by ωdt. Furthermore, ordP (g) is independent of choice of t, i.e., it depends
only on ω. We then denote ordP (ω) = ordP (g).

Denition 2.3.25. For a dierential ω ∈ ΩC , we can associate to it the divisor div(ω)
dened by

div(ω) =


P∈C
ordP (ω)(P ) 

Notice that for a non-zero dierential ω ∈ ΩC , we have a map ω → div(ω) which sends
ΩC → Div(C). Then, we can evaluate Div(C) → Pic(C) to get a map ΩC → Pic(C).

Denition 2.3.26. The canonical divisor class on C is the image in Pic(C) of the map
ΩC → Pic(C). The elements of the canonical divisor class on C are called canonical
divisors.

The idea behind canonical divisors is that if we take two (non-zero) dierentials ω,ϖ ∈
ΩC such that ω = fϖ, for some f ∈ K(C)×, then

div(ω) = div(f) + div(ϖ) 

The result of this is that canonical divisors of a curve C are all linearly equivalent.

2.3.4. Riemann-Roch. We nally have a sucient amount of theory to state the Riemann-
Roch Theorem, which denes the genus of a curve.

Theorem 2.3.27 (Riemann-Roch). Let C be a smooth curve and KC a canonical divisor
on C. There exists an integer g ≥ 0 such that for every divisor D ∈ Div(C),

dim

L(D)


− dim


L(KC −D)


= deg(D)− g + 1 

The integer g ≥ 0 is called the genus of C. Notice that in general, when D = 0, we
have L(D) =  0 , so

1− dim

L(KC)


= 0− g + 1 ,

which means dim

L(KC)


= 1. Furthermore, if we set D = KC , then the Riemann-Roch

theorem tells us that

dim

L(KC)


− 1 = deg(KC)− g + 1 ,

so deg(KC) = 2g − 2.
Now suppose deg(D) > 2g − 2. In particular, this means that deg(KC − D) < 0, so

L(KC −D) =  0 . Then,
dim


L(D)


= deg(D)− g + 1 

The above discussion can be summarized as the following corollary to Theorem 2.3.27.

Corollary 2.3.28.

(1) dim

L(KC)


= g.

(2) deg(KC) = 2g − 2.
(3) If deg(D) > 2g − 2, then dim


L(D)


= deg(D)− g + 1.

Now that we have dened the genus of a curve, we can give the following two theorems.
In particular, they show a distinction between genus 1 and genus 0 curves.
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Theorem 2.3.29. Let C be a curve of genus 1 and let P,Q ∈ C. Then (P ) ∼ (Q) if
and only if P = Q.

Proof. If P = Q, then clearly (P ) ∼ (Q). If (P ) ∼ (Q), then there exists f ∈ K(C) such
that div(f) = (P )− (Q). Notice that f ∈ L


(Q)


. The Riemann-Roch theorem tells us

that
dimL


(Q)


= deg(Q) = 1 ,

so L

(Q)


contains only constant functions. Then f is constant and P = Q. ■

Theorem 2.3.30. Let CK be a smooth curve. The following are equivalent over K:

(i) C has genus 0.
(ii) There exist P,Q ∈ C such that (P ) ∼ (Q) but P ̸= Q.
(iii) C ∼= P1.

Proof. (i) ⇒ (ii). Suppose C has genus g = 0 and let Q ∈ C. By the Riemann-Roch
theorem, since deg(Q) = 1 > 2g − 2,

dimL

(Q)


= deg(Q)− g + 1 = 2 

Then L

(Q)


contains all constant functions in K as well as the function X .

(ii) ⇒ (iii). If (P ) ∼ (Q), then there exists f ∈ K(C) such that div(f) = (P ) − (Q).
Using f we can construct a morphism F : C → P1 by

F (x) =


[1, 0] x = Q

[f(x), 1] x ̸= Q


It suces to show that degF = 1. Recall that for any choice of S ∈ P1,

degF =


R∈F−1(S)

eF (R) =


R∈F−1(S)

ordR(tS ◦ F ) ,

where tS ∈ K(P1) is a uniformizer for P1 at S. If we take S to be [0, 1] ∈ P1, then
F−1([0, 1]) = P because P is the only zero of f . Notice that the maximal ideal M[0,1] in

the local ring K[P1][0,1] is generated by X ∈ K(P1), so X is a uniformizer for P1 at [0, 1].
Then, X ◦ F = f , so P is a multiplicity 1 zero of X ◦ F . Thus,

degF = eF (P ) = 1 ,

so C ∼= P1.
(iii) ⇒ (i). By a corollary to the Riemann-Roch Theorem, the genus of C is equal to

the dimension of the L(KC) as a K-vector space, for any canonical divisor KC .
Let t be a coordinate function on P1. Notice that

ord∞(dt) = ord∞

− t2d(1t)


− 2 ,

and every P ∈ P1 \ ∞,
ordP (dt) = ordP


d(t− P )


= 0 

So, div(dt) = −2(∞). Then, for every non-zero divisor ω ∈ ΩP1 ,

deg

div(ω)


− deg


div(dt)


= −2 ,

so ω is not regular by denition. Let KC ∈ P1. Then

L(KC) = ω ∈ ΩP1  ω regular  = ∅ 
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Since C is isomorphic to P1, there exists some canonical divisor KC′ for C with L(KC′) =
∅. By a corollary to the Riemann-Roch Theorem, the genus of C is the dimension of
the L(KC′) as a K-vector space, for any canonical divisor KC′ . Thus, the genus of C is
dim(∅) = 0. ■

2.3.5. Connection to Weierstrass Equations. We are nally ready to prove the connection
between elliptic curves given by Weierstrass equations and elliptic curves dened as genus
one curves.

Theorem 2.3.31. Let EK be an elliptic curve. Then E is isomorphic to some curve

C : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3 ,

with a1,    , a6 ∈ K and the base point O corresponding with [0, 1, 0] ∈ P2.

Proof. Recall that in Example 2.3.23 we showed that L

6(O)


has dimension 6 and

contains the seven functions 1, x, y, x2, xy, y2, x3. Thus, there exists A1,    , A7 ∈ K such
that

A1 + A2x+ A3y + A4x
2 + A5xy + A6y

2 + A7x
3 

There exists a change of variables which puts this equation into a Weierstrass form.
Specically, we replace (x, y) with (−A6A7x,A6A

2
7y) to get

A1 + A2(−A6A7x) + A3(A6A
2
7y) + A4(−A6A7x)

2

+ A5(−A6A7x)(A6A
2
7y) + A6(A6A

2
7y)

2 + A7(−A6A7x)
3

= A1 − A2A6A7x+ A3A6A7y + A4A
2
6A

2
7x

2 − xyA2
6A

2
7A5xy + A3

6A
2
7y

2 − A4
7A

3
6x

3 

Then dividing by A4
7A

3
6 gives

A1

A4
7A

3
6

− A2A6A7

A4
7A

3
6

x+
A3A6A7

A4
7A

3
6

y +
A4A

2
6A

2
7

A4
7A

3
6

x2 − A2
6A

2
7A5

A4
7A

3
6

xy +
A3

6A
2
7

A4
7A

3
6

y2 − A4
7A

3
6

A4
7A

3
6

x3

=
A1

A4
7A

3
6

− A2

A3
7A

2
6

x+
A3

A3
7A

2
6

y +
A4

A2
7A

1
6

x2 − A5

A2
7A

1
6

xy +
1

A2
7

y2 − x3 

So, we have a map φ : E → P2 given by φ = [x, y, 1] whose image is given by a Weierstrass
equation. Say C is the curve given by this Weierstrass equation. The restriction φ : E →
C is a morphism of curves, so it is surjective.

We now want to show that φ is a degree-one morphism. From Example 2.3.23 we know
that x has one pole, namely an order 2 pole at O. Likewise, y has only an order 3 pole at
O. Then, the ramication index of φ at O is 1, since only 1 divides both 2 and 3. Thus,

deg(φ) = eφ(O) = 1 

Then φ is a degree-one morphism, so it is an isomorphism by Proposition 2.3.11.
The last thing we need to show is that C is smooth. Suppose, by contradiction, that

C is singular. A fact from algebraic geometry is that whenever a curve is singular, we
can nd a degree-one rational map ψ : C → P1. Then ψ ◦ φ : E → P1 is a degree-one
map of smooth curves, so it is an isomorphism. However, Theorem 2.3.30 then tells us
that E has genus 0, which contradicts that it is an elliptic curve. ■
Lemma 2.3.32. Let E be given by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 
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Then the dierential ω = dx(2y + a1x + a3) satises div(ω) = 0. This is called the
invariant dierential.

The next theorem is the converse of Theorem 2.3.31, which proves the relationship
between Weierestrass equations and elliptic curves.

Theorem 2.3.33. Let

C : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

be a smooth curve with a1,    , a6 ∈ K. Then C is an elliptic curve over K with base
point O = [0, 1, 0].

Proof. The above lemma says that the invariant dierential has div(ω) = 0. The
Riemann-Roch theorem tells us that

deg

div(ω)


= 2g − 2 ,

so g = 1 is the genus of E. We then have that E is a smooth curve of genus 1 with base
point O = [0, 1, 0], so it is an elliptic curve. ■
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3. Isogenies

3.1. Group Structure. Our goal for this section is to establish a group structure for the
points of E and for E(K), the K-rational points on E. We will then introduce isogenies
in 3.2 and see how they relate to the group of points on an elliptic curve.

Consider an elliptic curve in short Weierstrass form

E : y2 = x3 + Ax+ B

dened over a eld K. Suppose we have two distinct K-rational points P = (p1, p2) and
Q = (q1, q2) on E and draw the line

L : y − p2 =


p2 − q2
p1 − q1


(x− p1)

connecting P and Q. For now, ignore the possibility of p1 = q1, so that we do not divide
by zero. It is easy to see that L will always intersect E at a third point R = (r1, r2).
Moreover, R will also be another K-rational point, since L has slope

p2 − q2
p1 − q1

∈ K 

When p1 = q1, the line L does not appear to intersect E at a third point. However,
we have to remember that when our Weierstrass equation is written in non-homogeneous
coordinates, we still have the base point O ∈ E(K) out at innity. Then the third point
where L intersects E will be O.

Denition 3.1.1. Using the information from the above discussion, we can dene a com-
position rule ∗ : E × E → E as follows: Draw the line L from P to Q. Then P ∗Q is
the third point on L  E.

It may seem at rst that this composition rule could be a group operation on E.
However, notice that, for example, we would not be able to dene an identity element,
as P ∗Q is never P or Q. Instead, we perform one extra step to dene the group law.

Figure 3. Illustration of the group law on an elliptic curve.

Denition 3.1.2. Let + : E × E → E be dened by

P +Q = O∗(P ∗Q) 
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When E is given by a Weierstrass equation, then O is sent out to innity, so our group
law becomes:

P +Q = −(P ∗Q) 

Theorem 3.1.3.

E,+


is an abelian group, with + dened as above.

Proof. Notice that the operation + is well-dened, because ∗ is a well-dened operation
on E(K). The identity of this group is O and it is obvious that O + O = O. It is
also clear that every element P ∈ E(K) has an inverse, namely P ∗O. Notice that
P ∗Q = Q∗P , so

P +Q = O∗(P ∗Q) = O∗(Q∗P ) = Q+ P 

It remains to show that + is an associative operation, which we will omit as it is long
and not very interesting. ■

Corollary 3.1.4. The K-rational points E(K) form a subgroup of E.

Proof. In the discussion at the beginning of this section we explained that ∗ also denes
an operation on E(K), i.e., that P ∗Q ∈ E(K) if P,Q ∈ E(K). Then this extends to +
to say that P +Q ∈ E(K) if P,Q ∈ E(K). ■

Figure 4. The group law with the base point included at innity.

3.2. Introduction to Isogenies.

Denition 3.2.1. An isogeny is a morphism φ : E1 → E2 of elliptic curves which preserves
the base point, i.e., φ(O) = (O).

Notice that there is a trivial constant isogeny which sends every point to O. Since
this is the only constant isogeny, Theorem 2.3.8 tells us that every non-trivial isogeny is
surjective.

Recall that since isogenies are morphisms of curves, we already know some information
about them from Section 2.3.1.
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Example 3.2.2. An important isogeny is the multiplication-by-m map [m] : E → E
dened by

[m](P ) =





P + P + · · ·+ P  
m times

m > 0

(−P ) + (−P ) + · · ·+ (−P )  
−m times

m < 0

O m = 0



The map [m] is dened on all of E and satises [m](O) = (O), so it is indeed an isogeny.
Note that the trivial isogeny is [0]. We will see in Proposition 3.2.5 that deg([m]) = m2,
where the degree was given in Denition 2.3.9.

The kernel of [m] is called the m-torsion points of E and is denoted E[m]. The torsion
subgroup of E is the subgroup Etors containing all elements of nite order. That is, it is
the union

Etors =


m∈Z≥0

E[m] 

The set of isogenies between two elliptic curves E1 and E2 is denoted Hom(E1, E2). In
fact,


Hom(E1, E2),+


is an abelian group with + dened by

(φ+ ψ)(P ) = φ(P ) + ψ(P ) ,

The group operation on

Hom(E1, E2),+


is well-dened since

(φ+ ψ)(O) = φ(O) + ψ(O) = O ,

making φ + ψ an isogeny. The identity element is the trivial isogeny [0] and the inverse
of an isogeny φ is the map (−φ) dened by

(−φ)(P ) = −φ(P ) 

Associativity and commutativity easily follow from the group structure on elliptic curves.
We have just seen that isogenies are closely related to the group structure of E(K). In

fact, isogenies respect the group law on E(K). Since every isogeny is a morphism that
xes O, which is the identity of E(K), we have that the isogenies are exactly the group
homomorphisms of E(K).

The set Hom(E,E) of isogenies from an elliptic curve E to itself forms a ring with
multiplication given by composition of isogenies. We call Hom(E,E) the endomorphism
ring of E and denote it by End(E). This ring is one of our principal objects of interest
in this thesis. The group of units in the endomorphism ring is called the automorphism
group and is denoted Aut(E).

Denition 3.2.3. Every degree-m isogeny φ : E1 → E2 comes with a unique isogeny
φ : E2 → E1, called the dual isogeny to φ, which satises φ ◦ φ = [m].

To see that this isogeny φ is unique, suppose by contradiction that there exists another
isogeny ψ : E2 → E1 satisfying ψ ◦ φ = [m]. Specically, we would have

φ ◦ φ = ψ ◦ φ = [m] ,

so

(φ ◦ φ)− (ψ ◦ φ) = [m]− [m] = [0] 
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Then,
(φ− ψ) ◦ φ = [0] ,

so either φ = 0 or φ− ψ = 0.

Proposition 3.2.4. Let φ,ψ : E1 → E2 and λ : E2 → E3 be isogenies. Then

λ ◦ φ = φ ◦ λ and φ+ ψ = φ+ ψ 

We now have enough information to show that the degree of the multiplication-by-m
map is m2.

Proposition 3.2.5. [m] = [m] and deg[m] = m2.

Proof. It is clear that [0] = [0] and [1] = [1]. From Proposition 3.2.4, we know that

[m+ 1] = [m] +[1] = [m] + [1] 

In particular, this means

[m] = [1 + 1 + · · ·+ 1]  
m times

 = [1] +[1] + · · ·+[1]  
m times

= [1] + [1] + · · ·+ [1]  
m times

= [m] 

We then have 
deg([m])


= [m] ◦ [m] = [m] ◦ [m] = [m2] ,

so deg([m]) = m2. ■
3.3. Endomorphism Ring. As mentioned when we introduced the endomorphism ring,
it is one of the main objects of interest in this thesis. This section serves to provide useful
theory of the endomorphism ring and explain why it is interesting.

Proposition 3.3.1. End(E) has no zero divisors.

Proof. If φ,ψ ∈ End(E) are such that φψ = 0, then 0 = deg(φψ) = deg(φ) deg(ψ). So,
either deg(φ) or deg(ψ) must be 0, which implies that either φ or ψ is 0. ■
Proposition 3.3.2. Let EK be an elliptic curve and let φ,ψ ∈ End(E). Then the
degree map deg : End(E) → R has the following properties:

(1) deg(0) = 0.
(2) deg(ψ) ≥ 0.

(3) deg(ψ + φ) = deg(ψ) + deg(φ) + ψφ+ φψ.
(4) deg(mψ) = m2 deg(ψ).

Remark 3.3.3. A map that satises properties 1-4 is called a quadratic form.

Denition 3.3.4. The characteristic polynomial of an isogeny ψ ∈ End(E) is

cψ(x) = x2 − Tr(ψ)x+ deg(ψ) ,

where its trace is Tr(ψ) = ψ + ψ.
Proposition 3.3.5. An isogeny ψ ∈ End(E) is a zero of its own characteristic polyno-
mial, i.e., cψ(ψ) = 0.

Theorem 3.3.6 (Hasse). If ψ ∈ End(E), then Tr(ψ) ≤ 2


deg(ψ), where  ·  denotes
the standard absolute value.



23

Proof. Let ψ ∈ End(E) and x ∈ Q be given and set x = mn. Recall that the degree
map deg is non-negative. Then

cψ(x) =
m2

n2
− m

n
Tr(ψ) + deg(ψ) ,

so using the properties of a quadratic form given in Proposition 3.3.2 we get

n2cψ(x) = m2 − nmTr(ψ) + n2 deg(ψ) ,

= deg(m) + deg(nψ)− nmTr(ψ) ,

= deg(m) + deg(nψ) +m(−nψ) + (−n ψ)m ,

= deg(m) + deg(nψ) + m(−nψ) + (−nψ)m ,

= deg(m− nψ)

≥ 0 

The result of this is that either cψ(x) has 0 or 1 roots in Q, so the discriminant of cψ is

(−Tr(ψ))2 − 4 deg(ψ) ≤ 0. We then conclude that Tr(ψ) ≤ 2


deg(ψ). ■

Our goal now is to explain what the structure of End(E) looks like.

Denition 3.3.7. Let A be a nite-dimensional algebra over Q. An order R of A is a
subring of A which is Z-lattice in A and satises R ⊗Q = A .

Denition 3.3.8. A quadratic imaginary eld is a number eld of the form Q(
√
d), where

d < 0.

Denition 3.3.9. A quaternion algebra (over Q) is an algebra A of the form

A = Q+Qα +Qβ +Qαβ ,

with α2, β2 ∈ Q both less than 0, and βα = −αβ. In particular, α and β commute with
every element of Q.

Example 3.3.10. Let A = Q+Qα+Qβ+Qαβ be a quaternion algebra and consider the
set

R = w + xα + yβ + zαβ  w, x, y, z ∈ Z 
Clearly R is a subring of A and is a Z-lattice in A . We also have R ⊗Q = A , so R is
an order in A .

With these denitions in place, we can now state the following result:

Theorem 3.3.11. Let E be an elliptic curve. Then End(E) is one of the following: Z,
an order in a quadratic imaginary eld, or an order in a quaternion algebra.

It turns out that if char(K) = 0, then End(E) cannot be an order in a quaternion
algebra. This is one of the reasons why studying elliptic curves over nite elds is
interesting, as we can have elliptic curves with these unusually large endomorphism rings.
This is explored in greater depth in Section 4.4.

We now turn our attention briey to the automorphism group of an elliptic curve.
Recall that Aut(E) is the group (under composition) of invertible elements of the ring
End(E).
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Theorem 3.3.12. Let EK be an elliptic curve. The size of its automorphism group
depends on the characteristic of K and the j-invariant of E. Specically:

#Aut(E) =





24 char(K) = 2

12 char(K) = 3

6 j(E) = 0 and char(K) ̸= 2, 3

4 j(E) = 1728 and char(K) ̸= 2, 3

2 j(E) ̸= 0, 1728 and char(K) ̸= 2, 3

Proof. We will show the case when char(K) ̸= 2, 3. Let E be given by the short Weier-
strass equation

E : y2 = x3 + Ax+ B ,

for some A,B ∈ K. Recall from Proposition 2.3.20 that every change of variables between
two Weierstrass equations is of the form

(x, y) → (u2x+ r, u3y + su2x+ t) ,

for some r, s, t ∈ K and u ∈ K
×
. We have also seen that when E is given by a short

Weierstrass equation, any such map has r = s = t = 0. The image of the map (x, y) →
(u2x, u3y) is the curve given by the equation

u6y2 = u6x3 + Au2x+ B ,

which is birationally equivalent to

y2 = x3 + Au4x+ Bu6 

Thus, this map is an automorphism exactly when A = Au4 and B = Bu6. If j(E) = 1728,
then B = 0, so u must satisfy u4 = 1. Then #Aut(E) = 4 and Aut(E) has an element
of order 4, so Aut(E) ∼= Z4Z. If j(E) = 0, then A = 0, so u6 = 1 and Aut(E) ∼= Z6Z.
Lastly, if j(E) ̸= 0, 1728, then we only have u = 1 or u = −1, so Aut(E) ∼= Z2Z. ■
Remark 3.3.13. The proof for the cases when char(K) = 2, 3 are omitted because they
are signicantly longer, yet do not provide much additional insight. The idea is to mimic
the same process, but for the much longer equations resulting from Proposition 2.3.20.
The important dierence to make note of when char(K) = 2, 3 is that Aut(E) is not
necessarily cyclic like it was in the proof above. Furthermore, Aut(E) is not necessarily
abelian.

The proof of Theorem 3.3.12 also gave us some information about the structure of
Aut(E). Specically, when char(K) ̸= 2, 3, Aut(E) is cyclic. Notice that the isogeny
[1] : E → E given by P → P is always in Aut(E). Specically, it is the identity element
of the group. Another isogeny that is always in Aut(E) is [−1] : E → E given by
P → −P . So when #Aut(E) = 2, it is the set Aut(E) =  [1], [−1] .
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4. Elliptic Curves Over Finite Fields

We have now learned a signicant amount about the theory of elliptic curves over an
arbitrary eld K. The rest of this thesis is dedicated to the case when K is a nite eld.
Before we explore elliptic curves, we give a brief overview of nite elds.

4.1. Preliminary Theory of Finite Fields. From here on out, unless otherwise speci-
ed, p ∈ Z will be a prime and q = pr will be the rth power of p for some positive integer
r ∈ Z>0.

Proposition 4.1.1. For every prime p, there exists a unique eld of order p (up to
isomorphism). We denote this eld Fp and call it the nite eld of order p. Specically,
Fp

∼= ZpZ, with the usual addition and multiplication.

Remark 4.1.2. Fp is sometimes denoted GF(p), where GF stands for Galois eld.

By taking nite extensions of Fp, we obtain nite elds whose order is a prime power.
Specically, if LFp is a eld extension with [L : Fp] = r, then L is a nite eld of order
pr and is denoted Fpr = Fq. There is a unique eld of order pr (up to isomorphism) for
each prime p and power r. The characteristic of Fpr is p for every r ∈ Z>0.

Explicitly we can construct Fpr by

Fpr
∼= Fp[X ]

f(X)
,

where f(X) ∈ Fp[X ] is an irreducible polynomial of degree r.

Example 4.1.3. Let f(X) ∈ F2(X) be given by f(X) = X2 + X + 1. Then f(X) is an
irreducible polynomial of degree 2, so

F4
∼= F2[X ]

X2 +X + 1


Proposition 4.1.4. If n ∈ Z is not a prime power, then there is no eld of order n.

To summarize, Propositions 4.1.1 and 4.1.4 tell us that there exists a unique nite eld
of order Fq if and only if q ∈ Z>0 is a prime power.

Proposition 4.1.5. Fq is not algebraically closed.

Proof. Let Fq = α1,    ,αq  and consider the polynomial f(x) ∈ Fq[x] given by

f(x) = 1 + (x− α1)(x− α2) · · · (x− αq) 

Then f(αi) = 1 for all αi ∈ Fq, so Fq is not algebraically closed. ■

So, the closure of Fq cannot be a nite eld. Specically, the closure of Fq is

Fq =


m∈Z>0

Fqm 



26 CHRIS CALGER

4.2. Inverse Limits. In this section we introduce inverse limits which we will use to
construct useful objects, specically, the ℓ-adic integers and the Tate module of an elliptic
curve. These constructions will lead to Theorem 4.2.9, Tate’s Isogeny Theorem, which
gives us a lot of information regarding isogeneous elliptic curves over Fq.

Denition 4.2.1. Let Gi i∈D be a set of groups and φji : Gj → Gi i≤j∈D a set of
group homomorphisms, indexed by a directed set D. The pair (Gi i∈D, φji : Gj →
Gi i≤j∈D) is called an inverse system of groups if for all i, j, k ∈ D,

(1) φii(g) = g for all g ∈ Gi,
(2) φki = φji ◦ φkj whenever i ≤ j ≤ k.

Denition 4.2.2. Let G = (Gi i∈D, φji : Gj → Gi i≤j∈D) be an inverse system of
groups. The inverse limit of G is

lim←−(G) =

α ∈



i∈D
Gi

αi = φji(αj) whenever i ≤ j



With this denition in place, we can construct the ℓ-adic integers.

Denition 4.2.3. Let ℓ ∈ Z be a prime. The ring of ℓ-adic integers is

Zℓ = lim←−

ZℓnZ n∈Z>0 ,  ev : ZℓjZ → ZℓiZ i≤j∈Z>0


,

where ev is the evaluation map. Specically, this inverse limit is

Zℓ =

α ∈



n∈Z>0

ZℓnZ
 evji(αj) = αi for all i ≤ j


,

=

(an) : Z>0 → Z

 ai ≡ aj (mod ℓi) for all i ≤ j



Being an inverse limit, the ℓ-adic integers carry information about ZℓnZ for every
n ∈ Z>0. The following example serves to explain what that means.

Example 4.2.4. In this example, we will show that by generalizing statements to ZℓnZ
for every n, then we can learn information about the inverse limit Zℓ. Specically, we
will deduce something about the 5-adic integers Z5. To begin, we will show that for every
k ≥ 1, there exists xk ∈ Z5kZ such that

(†) x2
k + 1 ≡ 0 (mod 5k) 

We prove this by induction. For the base case, notice that (2)2 + 1 ≡ 0 (mod 5).
Now suppose there exists a solution xk ∈ Z5kZ to x2+1 ≡ 0 (mod 5k) for some k ≥ 1.

Note that either xk ≡ 2 or −xk ≡ 2 (mod 5), so suppose that xk ≡ 2 (mod 5). Then, by
denition, there exists integers m,n ∈ Z such that xk = m5 + 2 and x2

k = n5k − 1. I
claim that (xk + n5k)2 + 1 ≡ 0 (mod 5k+1).

(xk + n5k)2 + 1 = x2
k + 2xkn5

k + n252k + 1

= (n5k − 1) + 2(m5 + 2)n5k + n252k + 1

≡ 5k

n+ 2n(m5 + 2)


(mod 5k+1)

≡ n5k(1 + 2m5 + 4) (mod 5k+1)

≡ n5k+1(1 + 2m) (mod 5k+1)

≡ 0 (mod 5k+1)
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This completes the induction step and proves (†).
Notice in the above proof that we can nd two solutions to the congruence modulo

5k, for every k. In fact, it is not dicult to show that these are the only two solutions.
This allows us to make the following conclusion about the 5-adic integers: The equation
x2 + 1 = 0 has exactly two solutions in Z5.

The second useful object constructed by an inverse limit we will look at is the Tate
module of an elliptic curve.

Denition 4.2.5. Let ℓ ∈ Z be a prime, E an elliptic curve, and E the inverse system

E =

E[ℓn] n∈Z>0 ,  [ℓj−i] : E[ℓj ] → E[ℓi] i≤j∈Z>0




Then the (ℓ-adic) Tate module of E is Tℓ(E) = lim←−(E).

Much like how the ℓ-adic integers carry information about ZℓnZ, the Tate module
carries information about the torsion of an elliptic curve. We will see what this structure
looks like in Corollary 4.3.11.

Denition 4.2.6. Let LK be a normal, separable extension. Then the set of automor-
phisms

Gal(LK) = α ∈ L → L  α(x) = x for all x ∈ K 
is a group under composition called the Galois group of LK.

Example 4.2.7. We will determine the Galois group

G = Gal

Q(

√
2,
√
3,
√
5)Q




Let f(x) ∈ Q[x] be given and consider an element u ∈ Q(
√
2,
√
3,
√
5) that is a root of

f(x). If σ ∈ G, then σ(u) is also a root of f(x). Thus, for each ℓ ∈  2, 3, 5 , we have

σ(
√
ℓ) =

√
ℓ or −

√
ℓ. Let ℓ ∈  2, 3, 5 . Then,

σ

σ(
√
ℓ)

= σ(±

√
ℓ) = ±σ(

√
ℓ) = ±(±

√
ℓ) =

√
ℓ 

Hence the elements of G are self-invertible. Furthermore, G has six elements, so

G ∼= Z2Z× Z2Z× Z2Z 

Example 4.2.8. We will show that the Galois group of FqFq is

Gal(FqFq) ∼= Z = lim←−ZmZ ∼=


ℓ prime

Zℓ ,

where the inverse limit is taken over all m ∈ Z>0 and the morphisms in the inverse system

are the evaluation maps used in dening the ℓ-adic integers. The ring Z is called the
pronite integers.

We rst need to show that

Gal(FpkFp) ∼= ZkZ
for every k ∈ Z>0. Let π be dened by π(x) = xp. This morphism is explored in greater
depth in Section 4.3. Specically, in the discussion after Denition 4.3.2, we show that
π is a eld automorphism of Fp. Furthermore, αk = α for all α ∈ Fpk , so π is a eld
automorphism of Fpk as well. Fermat’s Little Theorem tells us that π xes all elements
of Fp, so π ∈ Gal(FpkFp).
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Galois theory tells us that

Gal(FpkFp) = [Fpk : Fp] = k 

Let i, j ∈  0, 1,    , k − 1 with i ̸= j be given. If πi = πj , then πi−j is the identity of
Gal(FpkFp). Recall that

Fpk
∼= Fp[X ]

f(X)
,

where f(X) ∈ Fp[X ] is an irreducible polynomial of degree k. Under this construction,
the polynomial g(X) = X i−j − X has exactly pk roots, since πi−j is the identity of
Gal(FpkFp). Then, g(X) must be the zero polynomial, so i− j = 0. This shows that all
powers 0, 1,    , k− 1 of π are distinct, so Gal(FpkFp) is generated by π and therefore is
cyclic with order k. Note that if q = pr, then

Gal(FqmFq) ⊂ Gal(FqFp) ∼= ZrZ
is a subgroup, so it is also cyclic and has order m.

Recall from Section 4.1 that
Fq =



m∈Z>0

Fqm 

Thus, we get that

Gal(FqFq) ∼= Z = lim←−ZmZ 

Lastly, we will not show this, but it is interesting to note that

Z ∼=


ℓ prime

Zℓ 

The next theorem shows the utility of the Tate module. The proof is beyond the scope
of the thesis [8].

Theorem 4.2.9 (Tate [8]). If E1, E2Fq are elliptic curves, then the natural map

HomFq(E1, E2)⊗ Zℓ → HomGal(Fq/Fq)


Tℓ(E1), Tℓ(E2)



is an isomorphism.

Remark 4.2.10. The above theorem is also true if Fq is replaced with a number eld.
Over an arbitrary eld, the map in the above theorem is injective.

Let Qℓ denote the ℓ-adic numbers, which are the eld of fractions of Zℓ. Dene the
module Vℓ by Vℓ(E) = Tℓ(E)⊗Zℓ

Qℓ. Then we get the corollary:

Corollary 4.2.11. If E1, E2Fq are elliptic curves, then the natural map

HomFq(E1, E2)⊗Qℓ → HomGal(Fq/Fq)


Vℓ(E1), Vℓ(E2)



is an isomorphism.

This means Tate’s theorem tells us that E1 and E2 are isogeneous if and only if Vℓ(E1)
and Vℓ(E2) are isomorphic as Gal(FqFq)-modules. We can also use this to say more about

E1 and E2. From Example 4.2.8, we have the fact that the Galois group Gal(FqFq) is
(topologically) generated by πE , where πE is the morphism dened by πE(P ) = P q.
Then, for a point P ∈ E(Fq), this means that P ∈ E(Fq) if and only if πE(P ) = P . In
particular, this discussion yields the following corollary:
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Corollary 4.2.12. Two elliptic curves E1 and E2 over Fq are isogeneous if and only if
#E1(Fq) = #E2(Fq).

4.3. Frobenius Endomorphism. We now consider an elliptic curve EFq. A natural
question to ask is how many elements are in the group E(Fq). That is, how many
Fq-rational points are on the elliptic curve?

Example 4.3.1. Let E be the elliptic curve dened over Fp given by

E : y2 = x3 + x 

We will show that #E(Fp) ≡ 0 (mod 4) for every odd prime p. First notice that we always
have one point for free, namely the base point O ∈ E(Fp). There are also three trivial
solutions (0, 0), (ζ1, 0), and (ζ2, 0), where ζ1, ζ2 ∈ Fp are the two solutions to ζ3 + ζ = 0.

Lastly, we count the number of elements x ∈ Fp such that x3+x is a square (not zero).
Of course, there must be an even number of these elements since for every such element,
the map x → −x produces another distinct element. Then there are twice as many points
(x, y) which solve y2 = x3 + x, so the number of non-trivial points (i.e., not including O
and those with y = 0) is divisible by 4. This, together with the four trivial points, shows
that the total number of Fp-rational points is divisible by 4, so #E(Fp) ≡ 0 (mod 4).

We now turn to a particular endomorphism of an elliptic curve over a nite eld called
the Frobenius endomorphism. As we will see in this section and the next, there are many
advantages to studying this particular morphism.

Denition 4.3.2. The Frobenius endomorphism of an elliptic curve EFq is the morphism
πE : E → E given by

πE(x, y) = (xq, yq) 

We will rst verify that πE is an endomorphism. If E (as a variety) has ideal I(E),
then denote E(q) to be the curve with ideal generated by  f (q)  f ∈ I(E) . In other
words, if E is given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 ,

then E(q) is given by raising each coecient to the qth power:

E(q) : y2 + aq1xy + aq3y = x3 + aq2x
2 + aq4x+ aq6 

Then πE is a morphism πE : E → E(q).
Let φ : Fq → Fq denote the qth power map, that is φ(x) = xq. By Fermat’s Little

Theorem, φ is the identity on Fq when q is prime. Clearly, φ is a homomorphism of
rings, so its kernel must be an ideal of Fq, which can be either  0  or all of Fq, since
Fq is a eld. Note that φ(1) = 1, so 1 ̸∈ kerφ. Then it must be that kerφ =  0 , so
φ is an injective morphism between nite elds of the same size, so it is therefore an
isomorphism.

We then have E(q) ∼= E which means πE is an endomorphism of E. The Frobenius
endomorphism also xes the base point O, so πE ∈ End(E). Recall from Section 3.3 that
Tr(πE) = πE + πE , where πE is its dual isogeny.

Denition 4.3.3. When EFq, where char(Fq) = p, we dene a similar Frobenius map
π : E → E(p) by π(x, y) = (xp, yp). Note that when p = q, then π = πE .
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Recall that in order to dene the degree of a morphism φ : C1 → C2, in Denition
2.3.9, we introduced an induced map φ∗ : K(C2) → K(C1) given by φ∗(f) = f ◦ φ.
Denition 4.3.4. We say that a morphism of curves φ : C1 → C2 is purely insepara-
ble if K(C1) is purely inseparable over φ∗K(C2). We dene separable and inseparable
morphisms in a similar way, by replacing purely inseparable in the denition.

Proposition 4.3.5. deg(π) = p and π is purely inseparable.

Proof. Let EFq be an elliptic curve. We know that π : E → E(p). It suces to show
that π∗Fq(E

(p)) = Fq(E)p, where Fq(E)p =  f p  f ∈ Fq(E) .
Notice that Fq(E) consists of quotients of homogeneous polynomials f, g ∈ Fq[E] of

the same degree, namely

fg = f(X, Y, Z)g(X, Y, Z) 

Then π∗Fq(E
(p)) consists of quotients

π∗(fg) = f(Xp, Y p, Zp)g(Xp, Y p, Zp) 

Observe that Fq[X, Y, Z]p = Fq[X
p, Y p, Zp], so we then have

f(Xp, Y p, Zp)g(Xp, Y p, Zp) = f(X, Y, Z)pg(X, Y, Z)p = (fg)p ,

which shows π∗Fq(E
(p)) = Fq(E)p. Lastly, we have that Fq(E)p is purely inseparable over

Fq(E), which means πE is purely inseparable.
We will not show that deg(πE) = p as the proof relies on a dierent characterization of

the degree of a morphism from the one we have been using. Specically, we may dene
the degree to be

deg(πE) = [Fq(E) : π∗
EFq(E

(p))] ,

which can be shown to be p. ■
Specically, this proposition tells us that deg(πE) = q and πE is purely inseparable.

Proposition 4.3.6. Let φ : E → E ′ be an isogeny of elliptic curves E,E ′Fq. Then
there exists a separable isogeny φs and an integer n ≥ 0 such that

φ = φs ◦ πn 

Denition 4.3.7. Let φ = φs ◦ πn be an isogeny of elliptic curves over Fq. We dene the
separable and inseparable degrees of φ to be

degs(φ) = deg(φs) and degi(φ) = pn ,

respectively.

In particular, note that deg(φ) = degs(φ) degi(φ). Also, φ is purely inseparable exactly
when degs(φ) = 1.

Proposition 4.3.8. Let φ : E1 → E2 be an isogeny. Then

#

φ−1(P )


= degs(φ)

for every P ∈ E2.

Notice that when we set P = O, Proposition 4.3.8 tells us that #ker(φ) = degs(φ).
Applying this to [m] : E → E tells us that #E[m] = degs([m]).
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Proposition 4.3.9. Let E be an elliptic curve and let F ⊂ E be a nite subgroup. Then
there exists a unique elliptic curve E ′ and a separable isogeny φ : E → E ′ with

ker(φ) = F 

Proposition 4.3.10. Let EFq be an elliptic curve and let m ∈ Z be nonzero. If m
and p are coprime, then E[m] ∼= ZmZ × ZmZ. Furthermore, either E[p] ∼= ZpZ or
E[p] ∼=  0 .
Proof. First, suppose m ∈ Z is a nonzero integer coprime to p. Then [m] is separable
and Proposition 4.3.9 tells us

#E[m] = deg[m] = m2 

Likewise for any divisor d ∈ Z of m, we have

#E[d] = deg[d] = d2 

Thus, it must be that E[m] ∼= ZmZ× ZmZ.
Now consider the multiplication-by-p map [p]. Since char(Fq) = p, [p] is not separable.

Recall from Proposition 4.3.5 that π is purely inseparable and deg(π) = [p]. This means
degs(π) = 1 and [p] = π ◦ π. Then,

#E[p] = degs[p] = degs(π ◦ π) = degs(π) degs(π) = degs(π) 
Notice that

degs(π) =

1 π is purely inseparable;

p else.

So, this tells us that either #E[p] = 0 or #E[p] = p. A small modication of the above
proof shows that #E[pa] = degs(π)a for every a ∈ Z>0. Thus, when E[p] = p we have
E[p] ∼= ZpZ. ■

The next corollary follows immediately.

Corollary 4.3.11. The Tate module of an elliptic curve EK is a Zℓ-module. If ℓ ∈ Z
is a prime not equal to p, then Tℓ(E) ∼= Zℓ×Zℓ. Otherwise, we have Tp(E) ∼=  0  or Zp.

Now that we are equipped with information about the Frobenius endomorphism, we
will use it to study the number of Fq-rational points on an elliptic curve over Fq.

Proposition 4.3.12. Let EFq be an elliptic curve and πE the Frobenius endomorphism.
Then

#E(Fq) = q + 1− Tr(πE) 

Proof. Using the properties of the degree map, we have the following:

#E(Fq) = deg(1− πE) = deg(πE)− Tr(πE) + 1 = 1 + q − Tr(πE) 

■
Example 4.3.13. Let EF5 be the elliptic curve

E : y2 = x3 + 2 

We will see later in Example 4.4.8 that #E(F5) = 6. In this case, πE is the map given
by πE(x, y) = (x5, y5). Since πE ∈ End(E), we know that it is a root of its characteristic
polynomial

cπE
(x) = x2 − Tr(πE)x+ deg(πE) 
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But, we also know from the above proposition that Tr(πE) = 5 + 1 −#E(F5) = 0. So,
πE ◦ πE = [−5]. The dual πE is the unique map such that πE ◦ πE = [5], so it must be
that πE = −πE .

Theorem 4.3.14 (Hasse). Let EFq be an elliptic curve. Then

#E(Fq)− q − 1 ≤ 2
√
q 

Proof. Theorem 3.3.6 tells us that Tr(ψ) ≤ 2


deg(ψ) for any ψ ∈ End(E). We have
just seen that πE ∈ End(E), deg(πE) = q, and Tr(πE) = q + 1 −#E(Fq), which proves
the result. ■

The next result was also proved by Hasse and is a generalization of the previous
theorem.

Theorem 4.3.15 (Riemann Hypothesis for Elliptic Curves). Let EFq be an elliptic
curve. Then for all integers m ≥ 1, we have

#E(Fqm)− qm − 1 ≤ 2
√
qm 

4.4. Supersingular Curves. We have mentioned several times that one of the inter-
ests in exploring elliptic curves over nite elds is that the endomorphism ring may be
unusually large. Specically, Theorem 3.3.11 tells us that End(E) may be an order in a
quaternion algebra. The main result of this section, Theorem 4.4.4, tells us exactly when
this occurs.

Recall Proposition 4.3.10 which says that when m and p are coprime, then E[m] ∼=
ZmZ× ZmZ, and if we set m = p, then depending on E we have either E[p] ∼= ZpZ
or E[p] ∼=  0 .
Denition 4.4.1. An elliptic curve EFq is supersingular if E[p] ∼=  0 . If E is not
supersingular, then it is called ordinary.

Remark 4.4.2. There is no relation between singular curves and supersingular elliptic
curves, since all elliptic curves are non-singular. The term supersingular is historic, and
comes from describing the j-invariants of certain elliptic curves as singular when they
correspond to elliptic curves of unusual endomorphism rings [6].

Lemma 4.4.3. If π is separable, then the natural map End(E) → End

Tp(E)


is injec-

tive.

The next theorem gives many equivalences for supersingular curves.

Theorem 4.4.4. Let EFq be an elliptic curve. The following are equivalent.

(1) E is supersingular, i.e., E[p] ∼=  0 .
(2) π is purely inseparable.
(3) [p] is purely inseparable and j(E) ∈ Fp2.
(4) EndFq

(E) is an order in a quaternion algebra.

(5) EndFq
(E) is not commutative.

(6) Tr(πE) ≡ 0 (mod p).

Proof. (1 ⇐⇒ 2) From Proposition 4.3.8 we know

#E[p] = #

[p]−1(O)


= degs([p]) ,
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Remember that [p] = π ◦ π by denition of the dual isogeny. We showed in Proposition
4.3.5 that π is purely inseparable, so degs(π) = degs([p]). This means

#E[p] = degs(π) ,
so π is purely inseparable if and only if #E[p] = 1, which occurs exactly when E is
supersingular.

(2 =⇒ 3) If π is purely inseparable, then since π is always purely inseparable, we
have [p] = π ◦ π is purely inseparable. It remains to show that j(E) ∈ Fp2 .

π factors as π = πs ◦ π and degs(π) = 1 because π is purely inseparable. Then,

[p] = π ◦ π =

πs ◦ π


◦ π = πs ◦ π2 ,

which means πs : E
(p2) → E is an isomorphism. Theorem 2.3.19 tells us

j(E) = j(E(p2)) = j(E)p
2

,

so j(E) ∈ Fp2 .
(3 =⇒ 4) Suppose, by way of contradiction, that End(E) is not an order in a

quaternion algebra. Then by Theorem 3.3.11, either End(E) = Z or is an order in an

imaginary quadratic number eld. This means that either End(E) ⊗ Q = Q or Q(
√
d),

for some d < 0.
We now want to show that the isogeny class of E is nite. Let ψ : E → E ′ be an isogeny

to some elliptic curve E ′. By assumption, we have that [p] is purely inseparable on E
and j(E) ∈ Fp2 . The proof of Corollary 4.4.7 shows that [p] is also purely inseparable
on E ′, which means #E ′[p] = degs[p]. The proof of (2 =⇒ 3) shows that we also have
j(E ′) ∈ Fp2 , so there are only nitely-many possibilities for the isogenous elliptic curve
E ′.

Let ℓ ∈ Z be any prime ℓ ̸= p such that ℓ is prime in End(E ′) for all elliptic curves E ′

isogenous to E. We proved in Proposition 4.3.10 that

E[ℓi] ∼= ZℓiZ× ZℓiZ 

Since E[ℓi] ⊂ E(Fq), there exist subgroups F1 ⊂ F2 ⊂ · · · ⊂ E such that each Fi
∼= Zℓi.

Denote Ei = EFi. By Proposition 4.3.9, there exists a unique isogeny φi : E → Ei with
ker(φi) = Fi.

Since, as j(Ei) ∈ Fp2 , there are only nitely-many possibilities (up to isomorphism)
of isogeneous elliptic curves Ei, there exists positive integers m,n ∈ Z>0 such that ι :
Em+n → Em is an Fq-isomorphism. Since we have started with F1 ⊂ F2 ⊂ · · · ⊂ E, there
is a natural projection

ϖ : Em → Em+n

which gives an endomorphism λ = ι ◦ϖ with ker(λ) = Fm+nFm. Then ker(λ) is cyclic
with order ℓn. Remember we chose ℓ to remain prime in End(Em). Then, notice that
since

ker(λ) = Fm+nFm ⊂ E[ℓm+n]

is a subgroup, there exists an isogeny τ such that

ϖ ◦ τ = [ℓm+n] 

So there must exist u ∈ Aut(Em) such that λ = u ◦ [ℓn/2]. However, ker([ℓn/2]) is never
cyclic, which is a contradiction.
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(4 ⇐⇒ 5) This equivalence is immediate from the characterization of End(E) in The-

orem 3.3.11. Either End(E) is commutative, in which case End(E)⊗Q = Q or Q(
√
d),

or End(E) is not commutative, in which case End(E)⊗Q is a quaternion algebra.
(5 =⇒ 2) We prove this direction contrapositively. If π is not purely inseparable then

E[p] ̸=  0 . Corollary 4.3.11 tells us that either Tp(E) =  0  or Zp. Notice that

E[p] ∼= Tp(E)pTp(E) ,

so we must have Tp
∼= Zp. By Lemma 4.4.3, End(E) injects into End(Tp) ∼= End(Zp).

We know End(ZmZ) ∼= ZmZ, and taking the inverse limit gives End(Zp) ∼= Zp. Thus,
End(E) injects into Zp, which is commutative, so End(E) is commutative.

(2 ⇐⇒ 6) We already know πE is always purely inseparable. If π is purely inseparable,
then setting p = qr gives (π)r = πE . This shows that πE is purely inseparable. Then,
[Tr(πE)] is inseparable, which means Tr(πE) ≡ 0 (mod p). A similar line of reasoning
shows that the converse of this is true. ■

Equivalence 6 can be strengthened when πE is the pth power map, that is when E is
dened over Fp.

Corollary 4.4.5. If p > 3. EFp is supersingular if and only if E(Fp) = p+ 1.

Proof. If p > 3, then Theorem 4.3.14 says

Tr(πE) ≤ 2
√
p ,

so, Tr(πE) = 0 because p > 2
√
q when p > 3. To nish the proof, recall that Proposition

4.3.12 says

#E(Fp) = p+ 1− Tr(πE) = p+ 1 

■

Remark 4.4.6. Corollary 4.4.5 fails if p ≤ 3. For example, it can be seen that

E : y2 + y = x3 + x and E ′ : y2 + y = x3 + x

are both elliptic curves over F2, but the #E(F2) = 3 ̸= 5 = #E(F2).

Using equivalence 3, we obtain another corollary:

Corollary 4.4.7. If E1, E2Fq are supersingular, then they are isogenous. That is, the
supersingular curves form a single isogeny class.

Proof. Let φ : E1 → E2 be an isogeny and suppose E1 is supersingular. Let [p]1 ∈
End(E1) and [p]2 ∈ End(E2) be the multiplication-by-p maps. Then, [p]1 ◦ φ = φ ◦ [p]2,
so

degs([p]1) degs(φ) = degs(φ) degs([p]2) 

It follows that degs([p]1) = degs([p]2). Then since E1 is supersingular, E[p] =  0 , so
degs([p]1) = 1 = degs([p]2). Thus, E2 is supersingular as well. ■

In the next two examples, we will use Corollary 4.4.5 to show that specic classes of
elliptic curves are supersingular.
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Example 4.4.8. Let p ≡ 2 (mod 3) be a prime, let B ∈ F×
p , and let E be the elliptic curve

E : y2 = x3 + B 

We will show that #E(Fp) = p+1. As always, we start by noting O ∈ E(Fp). Note that
#(F×

p ) = p− 1, and since p ≡ 2 (mod 3), we have that #(F×
p ) is coprime to 3.

Under the birational map (x, y) → (x, y + 12), E is equivalent to

E ′ : y2 + y = x3 + B 

This means that for each y ∈ Fp, there exists a unique x ∈ Fp such that y2 + y = x3 +B.
This gives us p points in E(Fp) in addition to the base point O, so we can conclude that
#E(Fp) = p+ 1.

Example 4.4.9. Let p ≡ 3 (mod 4) be a prime and let E be the elliptic curve

E : y2 = x3 − x 

We will show that #E(Fp) = p + 1. Again, we clearly have O ∈ E(Fp). There are also
three trivial solutions, which are (0, 0), (1, 0), and (−1, 0).

Next we count the number of non-zero squares in Fp equal to x3 − x, for some x.
Consider an element x ∈ Fp such that x ̸= 0, 1, p − 1. Note that either x3 − x or (not
inclusive) (−x)3 − (−x) is a square in Fp. Then there are are (p− 3)2 non-zero squares
equal to x3 − x.

This gives us 2(p− 3)2 = p− 3 non-trivial solutions to y2 = x3 − x. Adding the four
trivial solutions we counted in the beginning yields #E(Fp) = p+ 1.

The next theorem gives us information about how many supersingular curves there
are, up to isomorphism, modulo p, for each prime p.

Theorem 4.4.10 (Deuring, Eichler). The following sum is taken over supersingular
curves up to isomorphism.

p− 1

24
=



E/Fp

supersingular

1

#Aut(E)


The above theorem gives us a few notable corollaries. First, since

#Aut(E) =


24 p = 2 ;

12 p = 3 ,

we have that there is exactly one supersingular curve over F2 and one supersingular curve
over F3 (up to isomorphism). Specically, these curves are given by the equations

y2 + y = x3

and

y2 = x3 − x ,

respectively. Note that this does not mean that there is one supersingular curve over F2

and over F3. For example, over F2 there are three supersingular curves up to isomorphism,
namely the curves given by

y2 + y = x3 + x+ 1 , y2 + y = x3 + 1 , and y2 + y = x3 + x 
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4.5. Elliptic Curve Reduction. We conclude this thesis by showing an application of
elliptic curves over nite elds to the theory of elliptic curves over Q.

Theorem 4.5.1 (Mordell, 1923). E(Q) is a nitely generated group.

We also know that E(Q) is abelian, so Theorem 4.5.1 specically implies that

E(Q) ∼= E(Q)tors ⊕ Zr ,

for some non-negative integer r ∈ Zr≥0 called the rank of E. In general, this type of
decomposition into the torsion subgroup and nitely-many copies of Z is a property of
nitely generated abelian groups.

Denition 4.5.2. If E is given by a Weierstrass equation with smallest possible discrimi-
nant, then we say E has a minimal model.

Suppose we have an elliptic curve EQ given by a minimal model

E : y2 = x3 + Ax+ B ,

for some A,B ∈ Q, and we want to ask if

E : y2 = x3 + A′x+ B′

is an elliptic curve over Fp, where A′ ≡ A (mod p) and B′ ≡ B (mod p). The only
condition we need to verify is if the discriminant of this new (possibly singular) curve is
non-zero. That is,

∆ E = −16(4A′3 + 27B′2) ̸≡ 0 (mod p) 

if and only if EFp is an elliptic curve. Of course, this is entirely dependent on our choice
of prime p.

Denition 4.5.3. If p is a prime such that EFp is an elliptic curve, we say p is a prime

of good reduction. If EFp is not an elliptic curve, we say p is a prime of bad reduction.

Example 4.5.4. Let E be the elliptic curve

E : y2 = x3 − 4x+ 4 

If we reduce E over F3, we get

E3 : y
2 = x3 + 2x+ 1 ,

which has discriminant

∆ E3
= −16(4(2)3 + 27(1)2) = −944 ≡ 1 (mod 3) 

This means 3 is a prime of good reduction.
If we reduce E over F2, we get

E2 : y
2 = x3 ,

which has discriminant ∆ E2
= 0, so 2 is a prime of bad reduction. A quick calculation

shows that there is also bad reduction at 11.

Proposition 4.5.5. An elliptic curve over Q has bad reduction at prime p if and only if
p divides the discriminant of the elliptic curve.
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An immediate corollary is that an elliptic curve has only nitely many primes of bad
reduction.

Note that when we introduced E we required that E be given by a minimal Weierstrass
model. The next example shows what would have happened if we did not have this
condition.

Example 4.5.6. Let EQ be the elliptic curve given by

E : y2 = x3 + 56 ,

which has discriminant ∆ = −24 · 33 · 512. If we reduced E over F5, then we would get
the curve

E : y2 = x3 ,

which is singular. So it appears as though E has bad reduction at 5. However, since ∆
contains 512 as a factor, we can use a change of variables

(x, y) → (52x, 53y)

to see that E is also given by the model

E : y2 = x3 + 1

in which 5 is no longer a bad prime. So, the original bad-prime could be removed
by switching to a dierent model. Specically, we removed the factor 512 from the
discriminant. These removable bad-primes do not appear when we remove all factors p12

from the discriminant, which is exactly what it means for E to be given by a minimal
model.

Proposition 4.5.7. Whenever p is not a prime of bad reduction, there is an injection

E(Q)tors → E(Fp) 

Example 4.5.8. Let n ∈ Z>0 and consider the elliptic curve

En : y2 = x3 − n2x 

We will try to determine the structure of En(Q)tors. Of course, we always have O ∈
En(Q)tors. First, notice that by looking at the equation dening En, we get three more
points in En(Q) for free, namely (0, 0), (n, 0), and (−n, 0). Furthermore, each of these
points has order 2 in En(Q), so they are all in En(Q)tors.

Recall Example 4.4.9, which tells us that whenever p ≡ 3 (mod 4) is a prime, we have
#En(Fp) = p+1. Whenever p is a prime of good reduction, En(Q)tors injects into En(Fp).
This means that #En(Q)tors divides p+1 for all but nitely-many primes p ≡ 3 (mod 4).

A result from elementary number theory is that if k > 4 is an integer, then there exists
innitely many primes p ≡ 3 (mod 4) such that p+ 1 is not divisible by k.

With this fact, we see that #En(Q)tors cannot be larger than 4 or else we would
contradict our original deductions. Thus, En(Q)tors consists only of the four points we
found earlier, which shows

En(Q)tors = O, (0, 0), (n, 0), (−n, 0)  
Given an elliptic curve over Q, we may want to ask for which primes p is the reduction

E over Fp supersingular.
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Example 4.5.9. Consider the elliptic curve

E : y2 = x3 + x 

Notice that E has only one prime of bad reduction, namely 2. Whenever p ̸= 2 is a
prime, it is equivalent to either 1 or 3 modulo 4. Recall that in Example 4.3.1 we showed

# E(Fp) ≡ 0 (mod 4). Then E is supersingular over Fp exactly when p ≡ 3 (mod 4).
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Conclusion

In this thesis, we examined the theory of elliptic curves over nite elds. We explored
what it means for elliptic curves to be isogeneous and developed the theory of isogenies
which included dual isogenies, the endomorphism ring, the Frobenius endomorphism, and
separable/purely inseparable isogenies. Over nite elds, we used the Tate module to
show that elliptic curves are isogeneous over Fq exactly when they have the same number
of Fq-rational points.

We saw what the possible structure of the endomorphism ring is over arbitrary elds
and gave a more detailed description of the ring when the eld is nite. In particular,
we classied elliptic curves over nite elds as either supersingular or ordinary and saw
many equivalences for determining this characterization.

Lastly, as we have just seen in the previous section, we explored an application of nite
elds. Specically, we used our knowledge of nding the number of Fq-rational points on
an elliptic curve to help us understand elliptic curves over Q.

I will close this thesis by stating there is much more to learn about elliptic curves
over nite elds. An important and interesting topic that was not covered is the Weil
conjectures, which involve zeta functions associated to elliptic curves. A good reference
for this is Chapter V.2 of [5].
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